【題目】如圖,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB與CE交于F,ED與AB,BC,分別交于M,H.
(1)求證:CF=CH;
(2)△ABC不動,將△EDC繞點C旋轉(zhuǎn)到∠BCE=45°,證明:四邊形ACDM是菱形.

【答案】
(1)證明:在△ACB和△ECD中,

∵∠ACB=∠ECD=90°,

∴∠1+∠ECB=∠2+∠ECB,

∴∠1=∠2;

又∵AC=CE=CB=CD,

∴∠A=∠D=45°;

在△CFA和△CHD中,

,

∴△CFA≌△CHD(AAS),

∴CF=CH


(2)證明:∵∠ACB=∠ECD=90°,∠BCE=45°,

∴∠1=45°,∠2=45°.

又∵∠E=∠B=45°,

∴∠1=∠E,∠2=∠B,

∴AC∥MD,CD∥AM,

∴四邊形ACDM是平行四邊形,

又∵AC=CD,

∴平行四邊形ACDM是菱形


【解析】(1)先根據(jù)直角三角形的性質(zhì)得出∠1=∠2,再由AAS定理得出△CFA≌△CHD,進而可得出結(jié)論;(2)根據(jù)∠BCE=45°得出∠1=∠2=45°.根據(jù)∠E=∠B=45°得出∠1=∠E,∠2=∠B,故可得出四邊形ACDM是平行四邊形,再由AC=CD即可得出結(jié)論.
【考點精析】本題主要考查了菱形的判定方法和旋轉(zhuǎn)的性質(zhì)的相關知識點,需要掌握任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形;①旋轉(zhuǎn)后對應的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AD是中線,AE是角平分線,CFAEF , AB=5,AC=2,則DF的長為.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線x=﹣1,下列結(jié)論: ①abc<0;②2a+b=0;③a﹣b+c>0;④4a﹣2b+c<0
其中正確的是(

A.①②
B.只有①
C.③④
D.①④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△OAB的頂點A(﹣2,4)在拋物線y=ax2上,將Rt△OAB繞點O順時針旋轉(zhuǎn)90°,得到△OCD,邊CD與該拋物線交于點P,則點P的坐標為( )

A.(
B.(2,2)
C.( ,2)
D.(2,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,直線 y=x+2 與兩坐標軸分別交于A、B 兩點,點 C OB 的中點,D、E 別是直線 AB、y 軸上的動點,則△CDE 周長的最小值是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC繞點A順時針旋轉(zhuǎn)45°得到△AB′C′,若∠BAC=90°,AB=AC= ,則圖中陰影部分的面積等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角頂點C為旋轉(zhuǎn)中心,將△ABC旋轉(zhuǎn)到△A′B′C的位置,其中A′、B′分別是A、B的對應點,且點B在斜邊A′B′上,直角邊CA′交AB于D,則旋轉(zhuǎn)角等于(
A.70°
B.80°
C.60°
D.50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD為平行四邊形,DFEC和BCGH為正方形.求證:AC⊥EG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標為(﹣1,0),點C(0,5),另拋物線經(jīng)過點(1,8),M為它的頂點.

(1)求拋物線的解析式;
(2)求△MCB的面積SMCB

查看答案和解析>>

同步練習冊答案