分析 通過直角三角形全等的判定定理HL證得Rt△BDC≌Rt△CEB,然后由全等三角形的對應(yīng)角相等推知∠BCD=∠CBE;最后根據(jù)等角對等邊即可證得AB=AC,即△ABC是等腰三角形.
解答 證明:∵BD⊥AC于D,CE⊥AB于E,
∴∠BDC=∠CEB=90°.
在Rt△BDC與Rt△CEB中,
$\left\{\begin{array}{l}{BD=CE}\\{BC=BC}\end{array}\right.$,
∴Rt△BDC≌Rt△CEB(HL),
∴∠BCD=∠CBE(全等三角形的對應(yīng)角相等),
∴AB=AC,即△ABC是等腰三角形.
點(diǎn)評 本題考查了等腰三角形的判定、全等三角形的判定與性質(zhì).在應(yīng)用全等三角形的判定時(shí),要注意三角形間的公共邊和公共角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | AC=A′C′ | B. | BC=B′C′ | C. | ∠A=∠B′ | D. | ∠A=∠A′ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com