【題目】如圖,⊙ORt△ABC的外接圓,∠ABC90°,點P是圓外一點,PA⊙O于點A,且PAPB.

(1)求證:PB⊙O的切線;

(2)已知PA∠ACB60°,求⊙O的半徑.

【答案】(1)詳見解析;(2)⊙O的半徑為1.

【解析】

1)連結OB,由OA=OB,得∠OAB=OBA,再根據PA=PB,得∠PAB=PBA,從而得出∠PAO=PBO,由PA是⊙O的切線可推得∠PBO=90°,即OBPB,所以PB是⊙O的切線;

2)連結OP,根據PA=PB,則點P在線段AB的垂直平分線上,再由OA=OB,則點O在線段AB的垂直平分線上,從而得出OP垂直平分線段AB,根據BCAB,得出POBC,則∠AOP=ACB=60°.在RtAPO中,利用tanAOP,求出AP,即可得出答案.

1)連結OB

OA=OB,∴∠OAB=OBA

PA=PB,∴∠PAB=PBA,∴∠OAB+PAB=OBA+PBA,即∠PAO=PBO

又∵PA是⊙O的切線,∴∠PAO=90°,∴∠PBO=90°,∴OBPB

又∵OB是⊙O半徑,∴PB是⊙O的切線;

2)連結OP

PA=PB,∴點P在線段AB的垂直平分線上.

OA=OB,∴點O在線段AB的垂直平分線上,∴OP垂直平分線段AB

又∵BCAB,∴POBC,∴∠AOP=ACB=60°.

RtAPO中,∵tanAOPtan60°,AP,∴AO=1,∴⊙O的半徑為1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點P和圖形W的中間點的定義如下:Q是圖形W上一點,若M為線段PQ的中點,則稱M為點P和圖形W的中間點.C(-23),D1,3),E10),F(-2,0

(1)點A2,0),

①點A和原點的中間點的坐標為 ;

②求點A和線段CD的中間點的橫坐標m的取值范圍;

2)點B為直線y=2x上一點,在四邊形CDEF的邊上存在點B和四邊形CDEF的中間點,直接寫出點B的橫坐標n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABO的頂點O在坐標原點,點B在x軸上,ABO=90°,AOB=30°,OB=2,反比例函數(shù)y=x>0的圖象經過OA的中點C,交AB于點D.

1求反比例函數(shù)的關系式;

2連接CD,求四邊形CDBO的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,拋物線y=mx2+(1﹣2m)x+1﹣3m(m是常數(shù)).

(Ⅰ)當m=1時,求該拋物線與x軸的公共點的坐標;

(Ⅱ)拋物線與x軸相交于不同的兩點A,B.

①求m的取值范圍;

②無論m取何值,該拋物線都經過非坐標軸上的定點P,當<m≤8時,求△PAB面積的最大值,并求出相對應的m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩正方形彼此相鄰,且大正方形ABCD的頂點A,D在半圓O上,頂點B,C在半圓O的直徑上;小正方形BEFG的頂點F在半圓O上,E點在半圓O的直徑上,點G在大正方形的邊AB上.若小正方形的邊長為4 cm,求該半圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC∠ABC90°,AB12 cmAD8 cm,BC22 cm,AB⊙O的直徑,動點P從點A開始沿AD邊向點D1 cm/s的速度運動,動點Q從點C開始沿CB邊向點B2 cm/s的速度運動,PQ分別從點A,C同時出發(fā).當其中一動點到達終點時,另一個動點也隨之停止運動.設運動時間為t s.當t為何值時,PQ⊙O相切?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,⊙Ax軸相交于C(2,0),D(8,0)兩點,與y軸相切于點B(0,4)

(1)求經過BCD三點的拋物線對應的函數(shù)表達式;

(2)設拋物線的頂點為E,證明:直線CE⊙A相切.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小林準備進行如下操作實驗:把一根長為40cm的鐵絲剪成兩段,并把每一段各圍成一個正方形.

(1)要使這兩個正方形的面積之和等于58cm2,小林該怎么剪?(求出剪成的兩段鐵絲的長度)

(2)小峰對小林說:這兩個正方形的面積之和不可能等于48cm2.”他的說法對嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將半徑為4,圓心角為90°的扇形BACA點逆時針旋轉60°,點B、C的對應點分別為點D、E且點D剛好在上,則陰影部分的面積為_____

查看答案和解析>>

同步練習冊答案