如圖:在△ACB中,點D是AB邊上一點,且∠ACB=∠CDA,∠CAB的平分線分別交CD、BC于點E、F.
(1)作出∠CAB的平分線AE;
(2)試說明△CEF是什么三角形?并證明你的結(jié)論.
分析:(1)根據(jù)角平分線定義畫出圖形即可;
(2)根據(jù)角平分線定義推出∠CAE=∠DAE,根據(jù)三角形內(nèi)角和定理得出∠ACB=∠CDA,求出∠CFA=∠AED,推出∠CFE=∠CEF,根據(jù)等角對等邊推出CE=CF即可.
解答:解:(1)如圖所示:

(2)△CEF是等腰三角形.
證明:∵AE是∠CAB的平分線,
∴∠CAE=∠DAE,
∵∠CAE+∠ACB+∠CFE=180°∠DAE+∠CDA+∠AED=180°,
∵∠ACB=∠CDA,
∴∠CFA=∠AED,
∵∠AED=∠CEF,
∴∠CFE=∠CEF,
∴CE=CF,
即△CEF是等腰三角形.
點評:本題考查了等腰三角形的判定,三角形的內(nèi)角和定理,角平分線定義等知識點,注意:等角對等邊.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•虹口區(qū)二模)如圖,在△ACB中,∠CAB=90°,AC=AB=3,將△ABC沿直線BC平移,頂點A、C、B平移后分別記為A1、C1、B1,若△ACB與△A1C1B1重合部分的面積2,則CB1=
2
2
4
2
2
2
4
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•邯鄲二模)如圖,在△ACB中,∠ACB=90°,AC=4,BC=2,點P為射線CA上的一個動點,以P為圓心,1為半徑作⊙P.
(1)連接PB,若PA=PB,試判斷⊙P與直線AB的位置關(guān)系,并說明理由;
(2)當(dāng)PC為
5
5
時,⊙P與直線AB相切?當(dāng)⊙P與直線AB相交時,寫出PC的取值范圍為
4-
5
<PC<4+
5
4-
5
<PC<4+
5
;
(3)當(dāng)⊙P與直線AB相交于點M,N時,是否存在△PMN為正三角形?若存在,求出PC的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ACB中,∠ACB=90°,AC=BC,點C的坐標(biāo)為(-2,0),點A的坐標(biāo)為(-6,3),則B點的坐標(biāo)是
(1,5)
(1,5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ACB中,點D是AB邊上的一點,且∠ACB=∠CDA;點E在BC邊上,且點E到AC、AB的距離相等,連接AE交CD于點F.試判斷△CEF的形狀;并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案