如圖(1)△ABC與△EFD為等腰直角三角形,AC與DE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,將△DEF繞點(diǎn)A順時針旋轉(zhuǎn),當(dāng)DF邊與AB邊重合時,旋轉(zhuǎn)中止.現(xiàn)不考慮旋轉(zhuǎn)開始和結(jié)束時重合的情況,設(shè)DE,DF(或它們的延長線)分別交BC(或它的延長線) 于G,H點(diǎn),如圖(2)
(1)問:始終與△AGC相似的三角形有 及 ;
(2)設(shè)CG=x,BH=y,求y關(guān)于x的函數(shù)關(guān)系式(只要求根據(jù)圖(2)的情形說明理由)
(3)問:當(dāng)x為何值時,△AGH是等腰三角形.
(1)∵△ABC與△EFD為等腰直角三角形,AC與DE重合,
∵∠H+∠HAC=45°,∠HAC+∠CAG=45°,
∴∠H=∠CAG,
∵∠ACG=∠B=45°,
∴△AGC∽△HAB,
∴同理可得出:始終與△AGC相似的三角形有△HAB和△HGA;
故答案為:△HAB和△HGA.
(2)∵△AGC∽△HAB,
∴AC:HB=GC:AB,即9:y=x:9,
∴y=(9≥x>0),
答:y關(guān)于x的函數(shù)關(guān)系式為y=(9≥x>0).
(3)當(dāng)CG<BC時,∠GAC=∠H<∠HAG,
∴AC<CH,
∵AG<AC,
∴AG<CH<GH,
又∵AH>AG,AH>GH,
此時,△AGH不可能是等腰三角形,
當(dāng)CG=BC時,G為BC的中點(diǎn),H與C重合,△AGH是等腰三角形,
此時,GC=,即x=,
當(dāng)CG>BC時,由(1)△AGC∽△HGA,
所以,若△AGH必是等腰三角形,只可能存在AG=AH,
若AG=AH,則AC=CG,此時x=9,
當(dāng)CG=BC時,注意:DF才旋轉(zhuǎn)到與BC垂直的位置,此時B,E,G重合,∠AGH=∠GAH=45°,
所以△AGH為等腰三角形,所以CG=9.
綜上所述,當(dāng)x=9或x=或9時,△AGH是等腰三角形.
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com