如圖,在△ABC中,AB=AC,AD是BC邊上的中線,以AD為直徑作⊙O,連接BO并延長至E,使得OE=OB,連接AE.

(1)求證:AE是⊙O的切線;

(2)若BD=AD=4,求陰影部分的面積.


       解:(1)∵AB=AC,AD是BC邊上的中線,

∴∠ODB=90°,

在△BOD和△EOA中,

,

∴△BOD≌△EOA,

∴∠OAE=∠ODB=90°,

∴AE是⊙O的切線;

(2)∵∠ODB=90°,BD=OD,

∴∠BOD=45°,∴∠AOE=45°,

則陰影部分的面積=×4×4﹣=8﹣


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


下面四個“藝術(shù)字”中,軸對稱圖形的個數(shù)是( 。

    A.                          1個                                B.                                2個       C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在△ABC中,點D是BC的中點,點E、F分別是線段AD及其延長線上,且DE=DF,給出下列條件:①BE⊥EC;②BF∥EC;③AB=AC,從中選擇一個條件使四邊形BECF是菱形,并給出證明,你選擇的條件是  (只填寫序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


.一輛慢車與一輛快車分別從甲、乙兩地同時出發(fā),勻速相向而行,兩車在途中相遇后分別按原速同時駛往甲地,兩車之間的距離S(km)與慢車行駛時間t(h)之間的函數(shù)圖象如圖所示,下列說法:

①甲、乙兩地之間的距離為560km;

②快車速度是慢車速度的1.5倍;

③快車到達(dá)甲地時,慢車距離甲地60km;

④相遇時,快車距甲地320km

其中正確的個數(shù)是(  )

    A.                       1個                             B. 2個                       C.   3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,點A(m,2),B(5,n)在函數(shù)y=(k>0,x>0)的圖象上,將該函數(shù)圖象向上平移2個單位長度得到一條新的曲線,點A、B的對應(yīng)點分別為A′、B′.圖中陰影部分的面積為8,則k的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


的相反數(shù)是( 。

   A.2            B. ﹣2             C.                D. ﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖是二次函數(shù)y=ax2+bx+c=(a≠0)圖象的一部分,對稱軸是直線x=﹣2.關(guān)于下列結(jié)論:①ab<0;②b2﹣4ac>0;③9a﹣3b+c<0;④b﹣4a=0;⑤方程ax2+bx=0的兩個根為x1=0,x2=﹣4,其中正確的結(jié)論有(  )

   A.①③④       B. ②④⑤          C. ①②⑤          D. ②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,點B在線段AE上,點C在線段AD上.

(1)請直接寫出線段BE與線段CD的關(guān)系:   ;

(2)如圖2,將圖1中的△ABC繞點A順時針旋轉(zhuǎn)角α(0<α<360°),

①(1)中的結(jié)論是否成立?若成立,請利用圖2證明;若不成立,請說明理由;

②當(dāng)AC=ED時,探究在△ABC旋轉(zhuǎn)的過程中,是否存在這樣的角α,使以A、B、C、D四點為頂點的四邊形是平行四邊形?若存在,請直接寫出角α的度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在△ABC中,DE分別是AB、AC的中點,若BC=10,則DE=     

查看答案和解析>>

同步練習(xí)冊答案