【題目】已知射線AB∥射線CD,P為一動點,AE平分∠PAB,CE平分∠PCD,且AE與CE相交于點E.
(1)在圖1中,當點P運動到線段AC上時,∠APC=180°.
①直接寫出∠AEC的度數;②求證:∠AEC=∠EAB+∠ECD;
(2)當點P運動到圖2的位置時,猜想∠AEC與∠APC之間的關系,并加以說明;
(3)當點P運動到圖3的位置時,(2)中的結論是否還成立?若成立,請說明理由;若不成立,請寫出∠AEC與∠APC之間的關系,并加以證明。
【答案】(1))①∠AEC=90°②見解析;(2)∠AEC=∠APC, 理由見解析;(3)不成立,∠AEC=180∠APC ,理由見解析
【解析】
(1)①由平行線的性質可得出∠PAB+∠PCD=180°,進而可得出∠AEC的度數;
②在圖1中,過E作EF∥AB,根據平行線的性質可得出∠AEF=∠EAB、∠CEF=∠ECD,進而即可證出∠AEC=∠AEF+∠CEF=∠EAB+∠ECD;
(2)猜想:∠AEC=∠APC,由角平分線的定義可得出∠EAB=∠PAB、∠ECD=∠PCD,由(1)可知∠AEC=∠EAB+∠ECD、∠APC=∠PAB+∠PCD,進而即可得出∠AEC=(∠PAB+∠PCD)=∠APC;
(3)在圖3中,(2)中的結論不成立,而是滿足∠AEC=180°-∠APC,過P作PQ∥AB,由平行線的性質可得出∠PAB+∠APQ=180°、∠CPQ+∠PCD=180°,進而可得出∠PAB+∠PCD=360°-∠APC,再由角平分線的定義可得出∠EAB=∠PAB、∠ECD=∠PCD,結合(1)的結論即可證出∠AEC=180°- ∠APC.
(1)①∵AB∥CD,
∴∠PAB+∠PCD=180°,
∴∠AEC=90°;
②證明:在圖1中,過E作EF∥AB,則∠AEF=∠EAB.
∵AB∥CD,
∴EF∥CD,
∴∠CEF=∠ECD.
∴∠AEC=∠AEF+∠CEF=∠EAB+∠ECD.
(2)猜想:∠AEC=∠APC,理由如下:
∵AE、CE分別平分∠PAB和∠PCD,
∴∠EAB=∠PAB,∠ECD=∠PCD.
由(1)知∠AEC=∠EAB+∠ECD,∠APC=∠PAB+∠PCD,
∴∠AEC=∠PAB+∠PCD= (∠PAB+∠PCD)= ∠APC.
(3)在圖3中,(2)中的結論不成立,而是滿足∠AEC=180∠APC,
其證明過程是:
過P作PQ∥AB,則∠PAB+∠APQ=180°.
∵AB∥CD,
∴PQ∥CD,
∴∠CPQ+∠PCD=180.
∴∠PAB+∠APQ+∠CPQ+∠PCD=360°,即∠PAB+∠PCD=360°∠APC.
∵AE、CE分別平分∠PAB和∠PCD,
∴∠EAB=∠PAB,∠ECD=∠PCD.
由(1)知∠AEC=∠EAB+∠ECD,
∴∠AEC=∠PAB+∠PCD= (∠PAB+∠PCD)= 180°- ∠APC.
科目:初中數學 來源: 題型:
【題目】某批發(fā)門市銷售兩種商品,甲種商品每件售價為300元,乙種商品每件售價為80元.新年來臨之際,該門市為促銷制定了兩種優(yōu)惠方案:
方案一:買一件甲種商品就贈送一件乙種商品;
方案二:按購買金額打八折付款.
某公司為獎勵員工,購買了甲種商品20件,乙種商品x(x≥20)件.
(1)分別寫出優(yōu)惠方案一購買費用y1(元)、優(yōu)惠方案二購買費用y2(元)與所買乙種商品x(件)之間的函數關系式;
(2)若該公司共需要甲種商品20件,乙種商品40件.設按照方案一的優(yōu)惠辦法購買了m件甲種商品,其余按方案二的優(yōu)惠辦法購買.請你寫出總費用w與m之間的關系式;利用w與m之間的關系式說明怎樣購買最實惠.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,銳角△ABC內接于⊙O,若⊙O的半徑為6,sinA=,求BC的長.
【答案】BC=8.
【解析】試題分析:通過作輔助線構成直角三角形,再利用三角函數知識進行求解.
試題解析:作⊙O的直徑CD,連接BD,則CD=2×6=12.
∵
∴
∴
點睛:直徑所對的圓周角是直角.
【題型】解答題
【結束】
22
【題目】如圖,一次函數y=k1x+b與反比例函數y=的圖象交于A(2,m),B(n,﹣2)兩點.過點B作BC⊥x軸,垂足為C,且S△ABC=5.
(1)求一次函數與反比例函數的解析式;
(2)根據所給條件,請直接寫出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函數y=圖象上的兩點,且y1≥y2,求實數p的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是一個正方體的表面展開圖,請回答下列問題:
(1)與面B、C相對的面分別是 ;
(2)若A=a3+a2b+3,B=a2b﹣3,C=a3﹣1,D=﹣(a2b﹣6),且相對兩個面所表示的代數式的和都相等,求E、F分別代表的代數式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明和小華是同班同學,也是鄰居,某日早晨,小明7:40先出發(fā)去學校,走了一段后,在途中停下吃了早餐,后來發(fā)現上學時間快到了,就跑步到學校;小華離家后直接乘公共汽車到了學校.如圖是他們從家到學校已走的路程s(米)和所用時間t(分鐘)的關系圖.則下列說法中
①小明家與學校的距離1200米;
②小華乘坐公共汽車的速度是240米/分;
③小華乘坐公共汽車后7:50與小明相遇;
④小華的出發(fā)時間不變,當小華由乘公共汽車變?yōu)榕懿,且跑步的速度?/span>100米/分時,他們可以同時到達學校.其中正確的個數是( )
A. 1 個B. 2個
C. 3 個D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數的圖象與反比例函數的圖象交于點A(,n)和B.
(1)求k的值和點B的坐標;
(2)如果P是x軸上一點,且AP=AB,直接寫出點P的坐標
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下表給出了代數式﹣x2+bx+c與x的一些對應值:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
﹣x2+bx+c | … | 5 | n | c | 2 | ﹣3 | ﹣10 | … |
(1)根據表格中的數據,確定b,c,n的值;
(2)設y=﹣x2+bx+c,直接寫出0≤x≤2時y的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若干個工人裝卸一批貨物,每個工人的裝卸速度相同,如果這些工人同時工作,則需10小時裝卸完畢;現改變裝卸方式,開始一個人干,以后每隔t(整數)小時增加一個人干,每個參加裝卸的人都一直干到裝卸完畢,且最后參加的一個人裝卸的時間是第一個人的,則按改變的方式裝卸,自始至終共需時間_____小時.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學生小明、小華為了解本校八年級學生每周上網的時間,各自進行了抽樣調查.小明調查了八年級信息技術興趣小組中40名學生每周上網的時間,算得這些學生平均每周上網時間為2.5h;小華從全體320名八年級學生名單中隨機抽取了40名學生,調查了他們每周上網的時間,算得這些學生平均每周上網時間為1.2h.小明與小華整理各自樣本數據,如表所示.
時間段(h/周) | 小明抽樣人數 | 小華抽樣人數 |
0~1 | 6 | 22 |
1~2 | 10 | 10 |
2~3 | 16 | 6 |
3~4 | 8 | 2 |
(每組可含最低值,不含最高值)
請根據上述信息,回答下列問題:
(1)你認為哪位學生抽取的樣本具有代表性?_____.
估計該校全體八年級學生平均每周上網時間為_____h;
(2)在具有代表性的樣本中,中位數所在的時間段是_____h/周;
(3)專家建議每周上網2h以上(含2h)的同學應適當減少上網的時間,根據具有代表性的樣本估計,該校全體八年級學生中有多少名學生應適當減少上網的時間?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com