【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)的直線與直線相交于點(diǎn).
(1)直線的關(guān)系式為 ;直線的關(guān)系式為 (直接寫出答案,不必寫過程).
(2)求的面積.
(3)若有一動(dòng)點(diǎn)沿路線運(yùn)動(dòng),當(dāng)時(shí),求點(diǎn) 坐標(biāo).
【答案】(1)y=x,y=﹣x+6;(2)12;(3)M的坐標(biāo)是:(1,)或(1,5)
【解析】
(1)根據(jù)待定系數(shù)法,即可得到答案;
(2)先求出點(diǎn)C的坐標(biāo),再根據(jù)三角形的面積公式,即可求解;
(3)設(shè)M的橫坐標(biāo)為m,根據(jù)S△OCM=3,得m=1,再分2種情況討論:①當(dāng)點(diǎn)M在y=x上時(shí),②當(dāng)點(diǎn)M在y=x上時(shí),分別求出答案即可.
(1)設(shè)直線OA的關(guān)系式為:y=kx,
把代入y=kx,得:2=4k,解得:k=,
∴直線OA的關(guān)系式為y=x;
設(shè)直線AB的關(guān)系式是:y=kx+b,
把,代入y=kx+b,得:,
解得:,
∴直線AB的關(guān)系式是:y=﹣x+6;
(2)在y=﹣x+6中,令x=0,解得:y=6,
∴C(0,6),
∴S△OAC=×6×4=12;
(3)設(shè)M的橫坐標(biāo)為m,
∵S△OCM=3,
∴S△OCM=×6m=3,
∴m=1,
當(dāng)點(diǎn)M在y=x上時(shí),把x=1代入y=x,得:y=×1=,則M的坐標(biāo)是(1,);
當(dāng)點(diǎn)M在y=﹣x+6上時(shí),把x=1代入y=﹣x+6,得:y=5,則M的坐標(biāo)是(1,5).
綜上所述:M的坐標(biāo)是:(1,)或(1,5).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長方形紙片ABCD折疊,使頂點(diǎn)A與頂點(diǎn)C重合在一起,EF為折痕.若AB=9,BC=3,試求以折痕EF為邊長的正方形面積( 。
A. 11 B. 10 C. 9 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的頂點(diǎn)A在x軸的正半軸上.頂點(diǎn)B的坐標(biāo)為(3,),點(diǎn)C的坐標(biāo)為(1,0),且∠AOB=30°點(diǎn)P為斜邊OB上的一個(gè)動(dòng)點(diǎn),則PA+PC的最小值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD外一點(diǎn),連接AE、BE和DE,過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=3.下列結(jié)論:①△APD≌△AEB;②EB⊥ED;③點(diǎn)B到直線AE的距離為;④S正方形ABCD=8+.則正確結(jié)論的個(gè)數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中點(diǎn)E為AD的中點(diǎn),連接CE,將△CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得△CGF,點(diǎn)G在CE上,作DM⊥CE于點(diǎn)M,連接BM交CF于N,已知四邊形GFNM面積為27,則正方形ABCD的邊長為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=45°,過C作AB邊上的高CD,H為BC邊上的中點(diǎn),連接DH,CD上有一點(diǎn)F,且AD=DF,連接BF并延長交AC于E,交DH于G.
(1)若AC=5,DH=2,求DF的長.
(2)若AB=CB,求證:BG=AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于E,交DC的延長線于F,BG⊥AE于G,BG=,則△EFC的周長為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過點(diǎn)A(,0),B(,0),且與y軸相交于點(diǎn)C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱軸的右側(cè),點(diǎn)E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱軸為直線x=﹣1,點(diǎn)B的坐標(biāo)為(1,0),則下列結(jié)論:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正確的結(jié)論有( 。﹤(gè).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com