【題目】已知二次函數(shù)y=x2﹣(a﹣1)x+a﹣2,其中a是常數(shù).

(1)求證:不論a為何值,該二次函數(shù)的圖象與x軸一定有公共點;

(2)當(dāng)a=4時,該二次函數(shù)的圖象頂點為A,與x軸交于B,D兩點,與y軸交于C點,求四邊形ABCD的面積.

【答案】(1)證明見解析;(2)S四邊形ABCD =

【解析】試題分析:(1)利用根的判別式符號進(jìn)行證明;

(2)由拋物線解析式求得點B、C、D的坐標(biāo),然后利用分割法來求四邊形ABCD的面積.

試題解析:(1)y=x2﹣(a﹣1)x+a﹣2.

因為[﹣(a﹣1)]2﹣4(a﹣2)=(a﹣3)2≥0.

所以,方程x2﹣(a﹣1)x+a﹣2=0有實數(shù)根.

所以,不論a為何值,該函數(shù)的圖象與x軸總有公共點;

(2)由題可知:當(dāng)a=4時,y=x2﹣3x+2,

因為y=x2﹣3x+2=(x﹣2,所以A(,﹣),

當(dāng)y=0時,x2﹣3x+2=0,解得x1=1,x2=2,所以B(1,0),D(2,0),

當(dāng)x=0時,y=2,所以C(0,2),

所以S四邊形ABCD=S△ABD+S△BDC=+1=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=32cm,AB=24cm,點F從點B出發(fā)沿B→C方向運動,點E從點D出發(fā)沿D→A方向運動,點E和點F的速度都為3cm/s,則當(dāng)點E運動s后,線段EF剛好被AC垂直平分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)《天津日報》報道,天津市社會保障制度更加成熟完善,截止2017年4月末,累計發(fā)放社會保障卡12630000張.將12630000用科學(xué)記數(shù)法表示為( )
A.0.1263×108
B.1.263×107
C.12.63×106
D.126.3×105

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P為∠AOB內(nèi)一點,分別作出點P關(guān)于OA、OB的對稱點P1、P2 , 連接P1P2交OA于M,交OB于N,若P1P2=6,則△PMN的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題:分式與分式方程
(1)計算:x÷(x﹣1)
(2)解方程: =1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)如圖1,為美化校園環(huán)境,某校計劃在一塊長為60米,寬為40米的長方形空地上修建一個長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為米.

(1)花圃的面積為 (用含的式子表示);

(2)如果通道所占面積是整個長方形空地面積的,求出此時通道的寬;

(3)已知某園林公司修建通道、花圃的造價(元)、(元)與修建面積 之間的函數(shù)關(guān)系如圖2所示,如果學(xué)校決定由該公司承建此項目,并要求修建的通道的寬度不少于2米且不超過10米,那么通道寬為多少時,修建的通道和花圃的總造價為105920元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點M(a﹣3,a+4)在x軸上,則a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,點OAC上,以OA為半徑的OAB于點D,BD的垂直平分線交BC于點E,交BD于點F,連接DE

1)判斷直線DEO的位置關(guān)系,并說明理由;

2)若AC=6,BC=8OA=2,求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)有兩段長度相等的道路需硬化,現(xiàn)分別由甲、乙兩個工程隊同時開始施工.如圖的線段和折線是兩隊前6天硬化的道路長y、y(米)與施工時間x(天)之間的函數(shù)圖象

根據(jù)圖象解答下列問題:
(1)直接寫出y、y(米)與x(天)之間的函數(shù)關(guān)系式.
①當(dāng)0<x≤6時,y;
②當(dāng)0<x≤2時,y;當(dāng)2<x≤6時,y
(2)求圖中點M的坐標(biāo),并說明M的橫、縱坐標(biāo)表示的實際意義;
(3)施工過程中,甲隊的施工速度始終不變,而乙隊在施工6天后,每天的施工速度提高到120米/天,預(yù)計兩隊將同時完成任務(wù).兩隊還需要多少天完成任務(wù)?

查看答案和解析>>

同步練習(xí)冊答案