【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)AB在雙曲線y= (x0)上,BCx軸交于點(diǎn)D.若點(diǎn)A的坐標(biāo)為(1,2),則點(diǎn)B的坐標(biāo)為_________.

【答案】B4,).

【解析】

試題由矩形OABC的頂點(diǎn)AB在雙曲線y=x0)上,BCx軸交于點(diǎn)D.若點(diǎn)A的坐標(biāo)為(1,2),利用待定系數(shù)法即可求得反比例函數(shù)與直線OA的解析式,又由OA⊥AB,可得直線AB的系數(shù),繼而可求得直線AB的解析式,將直線AB與反比例函數(shù)聯(lián)立,即可求得點(diǎn)B的坐標(biāo).

試題解析:矩形OABC的頂點(diǎn)AB在雙曲線y=x0)上,點(diǎn)A的坐標(biāo)為(1,2),

∴2=

解得:k=2,

雙曲線的解析式為:y=,直線OA的解析式為:y=2x

∵OA⊥AB,

設(shè)直線AB的解析式為:y=-x+b

∴2=-×1+b,

解得:b=

直線AB的解析式為:y=-x+,

將直線AB與反比例函數(shù)聯(lián)立得出:

解得:

點(diǎn)B4,).

考點(diǎn): 反比例函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程

1)求證:方程總有兩個(gè)不相等的實(shí)數(shù)根。

2m為何整數(shù)時(shí),此方程的兩個(gè)根都是正整數(shù)?

3)若ABC的兩邊AB,AC的長是這個(gè)方程的兩個(gè)實(shí)數(shù)根,第三邊BC的長為5,當(dāng)ABC是等腰三角形時(shí),求m的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知二次函數(shù)經(jīng)過點(diǎn)B3,0),C03),D4,-5

1求拋物線的解析式;

2ABC的面積;

3P是拋物線上一點(diǎn),SABP=SABC這樣的點(diǎn)P有幾個(gè)請(qǐng)直接寫出它們的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為測(cè)量一座山峰CF的高度,將此山的某側(cè)山坡劃分為ABBC兩段,每段山坡近似是“直”的,測(cè)得坡長AB800米,BC200米,坡角∠BAF30°,坡角∠CBE45°,則山峰的高度為(  )米.

A.500B.400+100C.D.541

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCDAB上一點(diǎn)(不與點(diǎn)AB重合),連接PD并將線段PD繞點(diǎn)P順時(shí)針方向旋轉(zhuǎn)90°得到線段PEPE交邊BC于點(diǎn)F,連接BEDF

1)求證:∠ADP=∠EPB;

2)求∠CBE的度數(shù);

3)當(dāng)△PFD∽△BFP時(shí),求tanFPB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的三個(gè)頂點(diǎn)分別是A(-32)、B(0,4) 、C(0,2)

(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;平移△ABC,若A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,4) ,畫出平移后對(duì)應(yīng)的△A2B2C2;

(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo);

(3)x軸上有一點(diǎn)P,使得PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)E的中點(diǎn),連接AF交過E的切線于點(diǎn)D,AB的延長線交該切線于點(diǎn)C,若∠C30°,⊙O的半徑是2,則圖形中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】振華書店準(zhǔn)備購進(jìn)甲、乙兩種圖書進(jìn)行銷售,若購進(jìn)本甲種圖書和本乙種圖書共需元,若購進(jìn)本甲種圖書和本乙種圖書共需.

求甲、乙兩種圖書每本進(jìn)價(jià)各多少元;

該書店購進(jìn)甲、乙兩種圖書共本進(jìn)行銷售,且每本甲種圖書的售價(jià)為元,每本乙種圖書的售價(jià)為元,如果使本次購進(jìn)圖書全部售出后所得利潤不低于元,那么該書店至少需要購進(jìn)乙種圖書多少本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣5y軸于點(diǎn)A,交x軸于點(diǎn)B(﹣5,0)和點(diǎn)C(1,0),過點(diǎn)AADx軸交拋物線于點(diǎn)D.

(1)求此拋物線的表達(dá)式;

(2)點(diǎn)E是拋物線上一點(diǎn),且點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)在直線AD上,求△EAD的面積;

(3)若點(diǎn)P是直線AB下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到某一位置時(shí),△ABP的面積最大,求出此時(shí)點(diǎn)P的坐標(biāo)和△ABP的最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案