如圖:平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCO是菱形,點(diǎn)A的坐標(biāo)為(-3,4),點(diǎn)C在x軸的正半軸上,直線AC交y軸于點(diǎn)M,AB邊交y軸于點(diǎn)H,連接BM.
(1)求直線AC的解析式;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向 以2個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),設(shè)△PMA的面積為S(S≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式(要求寫出自變量t的取值范圍);
(3)在(2)的條件下,是否存在這樣的點(diǎn)P,使得∠MPB與∠BCO互為余角?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo).

解:(1)過(guò)點(diǎn)A作AE⊥x軸垂足為E,如圖(1)
∵A(-3,4),
∴AE=4 OE=3,
∴OA==5,
∵四邊形ABCO為菱形,
∴OC=CB=BA=0A=5,
∴C(5,0)
設(shè)直線AC的解析式為:y=kx+b,則

解得:,
∴直線AC的解析式為:y=-x+

(2)由(1)得M點(diǎn)坐標(biāo)為(0,),
∴OM=
如圖(1),當(dāng)P點(diǎn)在AB邊上運(yùn)動(dòng)時(shí)
由題意得OH=4,
∴HM=OH-OM=4-=,
∴s=BP•MH=(5-2t)•,
∴s=-t+(0≤t<),
當(dāng)P點(diǎn)在BC邊上運(yùn)動(dòng)時(shí),記為P1
在△OMC和△BMC中

∴△OMC≌△BMC(SAS),
∴OM=BM=,∠MOC=∠MBC=90°,
∴S=P1B•BM=(2t-5)×,
∴S=t-<t≤5);

(3)∵∠AOC=∠ABC,
∴∠AOM=∠ABM,
∵∠MPB+∠BCO=90°,∠BAO=∠BCO,∠BAO+∠AOH=90°,
∴∠MPB=∠AOH,
∴∠MPB=∠MBH.
當(dāng)P點(diǎn)在AB邊上運(yùn)動(dòng)時(shí),如圖(2)
∵∠MPB=∠MBH,
∴PM=BM,
∵M(jìn)H⊥PB,
∴PH=HB=2,
∴PA=AH-PH=1,
∴此時(shí)P點(diǎn)坐標(biāo)為:(-2,4);
當(dāng)P點(diǎn)在BC邊上運(yùn)動(dòng)時(shí),如圖(3),過(guò)點(diǎn)P作PN⊥CO于點(diǎn)N,
∵∠BHM=∠PBM=90°,∠MPB=∠MBH,
∴tan∠MPB=tan∠MBH,
=,
=
∴BP=,
∴PC=BC-BP=5-=
==,
∴PN=,NC=1,
∴NO=4,
∴P點(diǎn)坐標(biāo)為:(4,),
綜上所述:P點(diǎn)坐標(biāo)為:(-2,4);(4,).
分析:(1)已知A點(diǎn)的坐標(biāo),就可以求出OA的長(zhǎng),根據(jù)OA=OC,就可以得到C點(diǎn)的坐標(biāo),根據(jù)待定系數(shù)法就可以求出函數(shù)解析式.
(2)點(diǎn)P的位置應(yīng)分P在AB和BC上,兩種情況進(jìn)行討論.當(dāng)P在AB上時(shí),△PMB的底邊PB可以用時(shí)間t表示出來(lái),高是MH的長(zhǎng),因而面積就可以表示出來(lái),再利用當(dāng)P點(diǎn)在BC邊上運(yùn)動(dòng)時(shí),表示出P1B,BM長(zhǎng)即可得出答案;
(3)本題可以分兩種情況進(jìn)行討論,當(dāng)P點(diǎn)在AB邊上運(yùn)動(dòng)時(shí);當(dāng)P點(diǎn)在BC邊上運(yùn)動(dòng)時(shí),分別得出P點(diǎn)坐標(biāo)即可.
點(diǎn)評(píng):本題主要考查了利用待定系數(shù)法求函數(shù)的解析式以及全等三角形的判定與性質(zhì)和銳角三角函數(shù)的關(guān)系應(yīng)用,利用分類討論的思想得出是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,平面直角坐標(biāo)系中,O為直角三角形ABC的直角頂點(diǎn),∠B=30°,銳角頂點(diǎn)A在雙曲線y=
1x
上運(yùn)動(dòng),則B點(diǎn)在函數(shù)解析式
 
上運(yùn)動(dòng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面直角坐標(biāo)系中,⊙P與x軸分別交于A、B兩點(diǎn),點(diǎn)P的坐標(biāo)為(3,-1),AB精英家教網(wǎng)=2
3

(1)求⊙P的半徑.
(2)將⊙P向下平移,求⊙P與x軸相切時(shí)平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面直角坐標(biāo)系中,OB在x軸上,∠ABO=90°,點(diǎn)A的坐標(biāo)為(1,2).將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,則點(diǎn)O的對(duì)應(yīng)點(diǎn)C的坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)為A(a,0),B(b,0),C(0,c),且a,b,c滿足
a+2
+|b-2|+(c-b)2=0
.點(diǎn)D為線段OA上一動(dòng)點(diǎn),連接CD.
(1)判斷△ABC的形狀并說(shuō)明理由;
(2)如圖,過(guò)點(diǎn)D作CD的垂線,過(guò)點(diǎn)B作BC的垂線,兩垂線交于點(diǎn)G,作GH⊥AB于H,求證:
S△CAD
S△DGH
=
AD
GH
;
(3)如圖,若點(diǎn)D到CA、CO的距離相等,E為AO的中點(diǎn),且EF∥CD交y軸于點(diǎn)F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖在平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(8,0),B點(diǎn)坐標(biāo)為(0,6)C是線段AB的中點(diǎn).請(qǐng)問(wèn)在y軸上是否存在一點(diǎn)P,使得以P、B、C為頂點(diǎn)的三角形與△AOB相似?若存在,求出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案