【題目】如圖,已知是腰長為1的等腰三角形,以的斜邊為直角邊,畫第二個等腰三角形,再以的斜邊為直角邊,畫第三個等腰三角形,…,以此類推,則第2019個等腰三角形的斜邊長是___________。
【答案】
【解析】
等腰直角三角形一個直角邊為1,根據(jù)等腰直角三角形的斜邊長為直角邊長度的倍,即可求出斜邊長,先求出第一個到第四個的等腰直角三角形的斜邊的長,探究規(guī)律后即可解決問題.
解:
∵等腰直角三角形一個直角邊為1,
∴等腰直角三角形的斜邊長為直角邊長度的倍,
第一個三角形也就是(Rt△ABC)的斜邊長:1×=;
第二個三角形(也就是Rt△ACD),直角邊是第一個三角形的斜邊長,所以它的斜邊長: ;
第三個三角形(也就是Rt△ADE),直角邊是第二個三角形的斜邊長,所以它的斜邊長: ;
第四個三角形(也就是Rt△AEF),直角邊是第三個三角形的斜邊長,所以它的斜邊長:
;
……
第n個三角形,直角邊是第(n1)個三角形的斜邊長,其斜邊長為: .
∴第2019個等腰直角三角形的斜邊長是: .
故答案為: .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,EF⊥AB于F,CD⊥AB于D,點在AC邊上,且∠1=∠2=.
(1)判斷DG與BC的位置關系,并加以證明;
(2)若∠AGD=,試求∠DCG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+2的圖象與x軸交于點A(﹣1,0)、B(4,0),與y軸交于點C.
(1)a=;b=;
(2)點P為該函數(shù)在第一象限內(nèi)的圖象上的一點,過點P作PQ⊥BC于點Q,連接PC.
①求線段PQ的最大值;
②若以P、C、Q為頂點的三角形與△ABC相似,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=9,BC=12,在Rt△DEF中,∠DFE=90°,EF=6,DF=8,E、F兩點在BC邊上,DE、DF兩邊分別與AB邊交于點G、H.固定△ABC不動,△DEF從點F與點B重合的位置出發(fā),沿BC邊以每秒1個單位的速度向點C運動;同時點P從點F出發(fā),在折線FD﹣DE上以每秒2個單位的速度向點E運動.當點E到達點C時,△DEF和點P同時停止運動.設運動時間為t(秒).
(1)當t=2時,PH=cm,DG=cm;
(2)當t為何值時,△PDG為等腰三角形?請說明理由;
(3)當t為何值時,點P與點G重合?寫出計算過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班為獎勵在小運動會上取得較好成績的運動員,花了400元錢購買甲、乙兩種獎品共30件,其中甲種獎品每件16元,乙種獎品每件12元,求甲乙兩種獎品各買多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,將△ABC在平面內(nèi)繞點A按逆時針方向旋轉(zhuǎn)到△AB′C′的位置,連結(jié)CC′,使CC′∥AB.若∠CAB=65°,則旋轉(zhuǎn)的角度為( )
A.65°
B.50°
C.40°
D.35°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,以邊AB上的一點O為圓心,以OA的長為半徑的圓交邊AB于點D,BC與⊙O相切于點C.若⊙O的半徑為5,∠A=20°,則 的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖①、圖②是8×5的正方形網(wǎng)格,線段AB、BC的端點均在格點上.按要求在圖①、圖②中以AB、BC為鄰邊各畫一個四邊形ABCD,使點D在格點上.要求所畫兩個四邊形不全等,且同時滿足四邊形ABCD是軸對稱圖形,點D到∠ABC兩邊的距離相等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校對七、八、九年級的學生進行體育水平測試,成績評定為優(yōu)秀、良好、合格、不合格四個等第.為了解這次測試情況,學校從三個年級隨機抽取200名學生的體育成績進行統(tǒng)計分析.相關數(shù)據(jù)的統(tǒng)計圖、表如下:
各年級學生成績統(tǒng)計表 | ||||
優(yōu)秀 | 良好 | 合格 | 不合格 | |
七年級 | a | 20 | 24 | 8 |
八年級 | 29 | 13 | 13 | 5 |
九年級 | 24 | b | 14 | 7 |
根據(jù)以上信息解決下列問題:
(1)在統(tǒng)計表中,a的值為 , b的值為;
(2)在扇形統(tǒng)計圖中,八年級所對應的扇形圓心角為度;
(3)若該校三個年級共有2000名學生參加考試,試估計該校學生體育成績不合格的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com