【題目】某化妝品銷售公司每月收益y萬元與銷售量x萬件的函數(shù)關(guān)系如圖所示.(收益=銷售利潤﹣固定開支)
(1)寫出圖中點(diǎn)A與點(diǎn)B的實際意義;
(2)求y與x的函數(shù)表達(dá)式;
(3)已知目前公司每月略有虧損,為了讓公司扭虧為盈,經(jīng)理決定將每件產(chǎn)品的銷售單價提高2元,請在圖中畫出提價后y與x函數(shù)關(guān)系的圖象,并直接寫出該函數(shù)的表達(dá)式.(要標(biāo)出確定函數(shù)圖象時所描的點(diǎn)的坐標(biāo))
【答案】(1)見解析;(2)y=4x﹣20;(3)y=6x﹣20.
【解析】試題分析:(1)點(diǎn)A表示固定開支為20萬元,點(diǎn)B表示當(dāng)銷售量為5萬件時,利潤為0萬元;
(2)利用待定系數(shù)法即可解決問題;
(3)由題意x=5時,y=10,設(shè)y=k′x+b′,則有,切線函數(shù)解析式即可解決問題;
試題解析:解:(1)點(diǎn)A表示固定開支為20萬元,點(diǎn)B表示當(dāng)銷售量為5萬件時,利潤為0萬元;
(2)設(shè)y=kx+b,把A(0,﹣20),B(5,0)代入得到: ,解得: ,∴y=4x﹣20.
(3)由題意x=5時,y=10,設(shè)y=k′x+b′,則有: ,解得: ,∴y=6x﹣20,函數(shù)圖象如圖所示:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提高飲水質(zhì)量,越來越多的居民開始選購家用凈水器.一商家抓住商機(jī),從廠家購進(jìn)了A、B兩種型號家用凈水器共160臺,A型號家用凈水器進(jìn)價是150元/臺,B型號家用凈水器進(jìn)價是350元/臺,購進(jìn)兩種型號的家用凈水器共用去36000元.
(1)求A、B兩種型號家用凈水器各購進(jìn)了多少臺;
(2)為使每臺B型號家用凈水器的毛利潤是A型號的2倍,且保證售完這160臺家用凈水器的毛利潤不低于11000元,求每臺A型號家用凈水器的售價至少是多少元?(注:毛利潤=售價﹣進(jìn)價)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一副三角板如圖甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=12,DC=14,把三角板DCE繞點(diǎn)C順時針旋轉(zhuǎn)15°得到△D1CE1(如圖乙),此時AB與 CD1交于點(diǎn)O,則線段AD1的長為( )
A.6
B.10
C.8
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)小李某天下午運(yùn)營全是在東西走向的人民大道上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午行駛里程如下:(單位:千米)
+15, -3, +14,-11,+10,-12,+4,-15,+16,-18
(1)他將最后一名乘客送到目的地時,距下午出車地點(diǎn)是多少千米?
(2)若汽車耗油量為升∕千米,這天下午共耗油多少升
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)已知二次函數(shù)y=ax2+bx+1的圖象經(jīng)過點(diǎn)(1,3)和(3,﹣5),求a、b的值;
(2)已知二次函數(shù)y=﹣x2+bx+c的圖象與x軸的兩個交點(diǎn)的橫坐標(biāo)分別為1和2.求這個二次函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:CD⊥AB.
證明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90°(垂直定義)
∴DG∥AC( )
∴∠2= ( )
∵∠1=∠2(已知)
∴∠1=∠ (等量代換)
∴EF∥CD( )
∴∠AEF=∠ ( )
∵EF⊥AB(已知)
∴∠AEF=90°( )
∴∠ADC=90°( )
∴CD⊥AB( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2,A,B分別是l1,l2上的點(diǎn),l3和l1,l2分別交于點(diǎn)C,D,P是線段CD上的動點(diǎn)(點(diǎn)P不與C,D重合).
(1)若∠1=150°,∠2=45°,求∠3的度數(shù);
(2)若∠1=α,∠2=β,用α,β表示∠APC+∠BPD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①已知正方形ABCD的邊BC、CD上分別有E、F兩點(diǎn),且∠EAF=45°,現(xiàn)將△ADF繞點(diǎn)A順時針旋轉(zhuǎn)90°至△ABH處.
(1)線段EF、BE、DF有何數(shù)量關(guān)系?并說明理由;
模仿(1)中的方法解決(2)、(3)兩個問題:
(2)如圖②,若將E、F移至BD上,其余條件不變,且BE=,DF=3,求EF的長;
(3)如圖③,圖形變成矩形ABCD,∠EAF=45°,BE=3,AB=6,AD=10,求DF和EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點(diǎn)O沿x軸向左平移2個單位長度得到點(diǎn)A,過點(diǎn)A作y軸的平行線交反比例函數(shù)的圖象于點(diǎn)B,AB=.
(1)求反比例函數(shù)的解析式;
(2)若P(, )、Q(, )是該反比例函數(shù)圖象上的兩點(diǎn),且時, ,指出點(diǎn)P、Q各位于哪個象限?并簡要說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com