【題目】如圖,點C是線段AB上除A、B外的任意一點,分別以AC、BC為邊在線段AB的同旁作等邊三角形ACD和等邊三角形BEC,連結(jié)AE交DC于M,連結(jié)BD交CE于N,AE與BD交于F
(1)求證:AE=BD;
(2)連結(jié)MN,仔細觀察△MNC的形狀,猜想△MNC是什么三角形?說出你的猜想,并加以證明.
【答案】(1)詳見解析;(2)△MNC是等邊三角形,理由詳見解析.
【解析】
(1)先由△ACD和△BCE是等邊三角形,可知AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,故可得出∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,根據(jù)SAS定理可知△ACE≌△DCB,由全等三角形的性質(zhì)即可得出結(jié)論;
(2)由(1)中△ACE≌△DCB,可知∠CAM=∠CDN,再根據(jù)∠ACD=∠ECB=60°,A、C、B三點共線可得出∠DCN=60°,由全等三角形的判定定理可知,△ACM≌△DCN,故MC=NC,再根據(jù)∠MCN=60°可知△MCN為等邊三角形.
(1)證明:∵△ACD和△BCE是等邊三角形,
∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,
∵∠DCA=∠ECB=60°,
∴∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,
在△ACE與△DCB中,
∵ ,
∴△ACE≌△DCB,
∴AE=BD;
(2)解:△MNC是等邊三角形.理由如下:
∵由(1)得,△ACE≌△DCB,
∴∠CAM=∠CDN,
∵∠ACD=∠ECB=60°,而A、C、B三點共線,
∴∠DCN=60°,
在△ACM與△DCN中,
∵,
∴△ACM≌△DCN,
∴MC=NC,
∵∠MCN=60°,
∴△MCN為等邊三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB⊥CD,且AB=CD.E、F是AD上兩點,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,則AD的長為( )
A. a+cB. b+cC. a﹣b+cD. a+b﹣c
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,矩形鐵片ABCD的長為2a,寬為a; 為了要讓鐵片能穿過直徑為 的圓孔,需對鐵片進行處理(規(guī)定鐵片與圓孔有接觸時鐵片不能穿過圓孔);
(1)如圖2,M、N、P、Q分別是AD、AB、BC、CD的中點,若將矩形鐵片的四個角去掉,只余下四邊形MNPQ, ①則此時鐵片是什么形狀;
②給出證明,并通過計算說明此時鐵片都能穿過圓孔;
(2)如圖3,過矩形鐵片ABCD的中心作一條直線分別交邊BC、AD于點E、F(不與端點重合),沿著這條直線將矩形鐵片切割成兩個全等的直角梯形鐵片;
①當BE=DF= 時,判斷直角梯形鐵片EBAF能否穿過圓孔,并說明理由;
②為了能使直角梯形鐵片EBAF順利穿過圓孔,請直接寫出線段BE的長度的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀思考
我們知道,在數(shù)軸上|a|表示數(shù)a所對應的點到原點的距離,這是絕對值的幾何意義,由此我們可進一步地來研究數(shù)軸上任意兩個點之間的距離,一般地,如果數(shù)軸上兩點A、B 對立的數(shù)用a,b表示,那么這兩個點之間的距離AB=|a﹣b|.也可以用兩點中右邊的點所表示數(shù)的減去左邊的點所表示的數(shù)來計算,例如:數(shù)軸上P,Q兩點表示的數(shù)分別是﹣1和2,那么P,Q兩點之間的距離就是 PQ=2﹣(﹣1)=3.
啟發(fā)應用
如圖,點A在數(shù)軸上對應的數(shù)為a,點B對應的數(shù)為b,且a、b滿足|a+3|+(b﹣2)2=0
(1)求線段AB的長;
(2)如圖,點C在數(shù)軸上對應的數(shù)為x,且x是方程2x+1=x﹣8的解,
①求線段BC的長;
②在數(shù)軸上是否存在點P使PA+PB=BC?若存在,直接寫出點P對應的數(shù):若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】分別寫有數(shù)0,2﹣1 , ﹣2,cos30°,3的五張卡片,除數(shù)字不同外其他均相同,從中任意抽取一張,那么抽到非負數(shù)的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市記者為了了解“霧霾天氣的主要成因”,隨機調(diào)查了該市部分市民,并對調(diào)查結(jié)果進行整理,繪制了如下尚不完整的統(tǒng)計圖表:
組別 | 觀點 | 頻數(shù)(人數(shù)) |
A | 大氣氣壓低,空氣不流動 | 80 |
B | 地面灰塵大,空氣濕度低 | m |
C | 汽車尾氣排放 | n |
D | 工廠造成的污染 | 120 |
E | 其他 | 60 |
請根據(jù)圖表中提供的信息解答下列問題:
(1)填空:m= , n= .
(2)若該市人口約有100萬人,請你計算其中持D組“觀點”的市民人數(shù)是多少萬人?
(3)若在這次接受調(diào)查的市民中,隨機抽查一人,則此人持C組“觀點”的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,(1)指出DC和AB被AC所截得的內(nèi)錯角;
(2)指出AD和BC被AE所截得的同位角;
(3)指出∠4與∠7,∠2與∠6,∠ADC與∠DAB各是什么關(guān)系的角,并指出各是哪兩條直線被哪一條直線所截形成的.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填寫推理理由,將過程補充完整:
如圖,已知AD⊥BC于點D,EF⊥BC于點F,AD平分∠BAC.求證:∠E=∠1.
證明:∵AD⊥BC,EF⊥BC(已知),
∴∠ADC=∠EFC=90°(垂直的定義).
∴____________(_____________).
∴∠1=_____(_____________),
∠E=_____(_______________).
又∵AD平分∠BAC(已知),
∴_____=________.
∴∠1=∠E(等量代換).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是某同學對多項式(x2-4x+2)(x2-4x+6)+4進行因式分解的過程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列問題:
(1)該同學第二步到第三步運用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.兩數(shù)和的完全平方公式 |
D.兩數(shù)差的完全平方公式 |
(2)該同學因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)若不徹底,請直接寫出因式分解的最后結(jié)果_________ .
(3)請你模仿以上方法嘗試對多項式(x2-2x)(x2-2x+2)+1進行因式分解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com