閱讀下列材料:

    正方形網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).以格點(diǎn)為頂點(diǎn)的多邊形叫格點(diǎn)多邊形,若格點(diǎn)多邊形至少有一邊是曲線,則稱其為曲邊格點(diǎn)多邊形.

     (1)求圖(1)中格點(diǎn)三角形的面積;

     (2)在圖(2)中畫出一個(gè)格點(diǎn)梯形,使它的面積等于9;(只需畫出,不必說明)

     (3)在圖(3)中畫出一個(gè)曲邊格點(diǎn)多邊形,使它的面積等于25,說明理由.

 

 (1)格點(diǎn)三角形△ABC的面積等于6;

    (2)不唯一,如:面積等于9的格點(diǎn)梯形如圖;

(3)如圖,分別作半徑為2的圓弧AB和BC,則曲邊三角形ABC的面積為4;同理,曲邊三角形CDE的面積為9;又三角形ACE的面積為12,所以曲邊五邊形的面積為25.

解析:正方形網(wǎng)格中,學(xué)會(huì)求格點(diǎn)多邊形和曲邊格點(diǎn)多邊形面積

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料:
正方形網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),以格點(diǎn)為頂點(diǎn)的三角形叫格點(diǎn)三角形.
數(shù)學(xué)老師給小明同學(xué)出了一道題目:在圖1正方形網(wǎng)格(每個(gè)小正方形邊長為1)中畫出格點(diǎn)△ABC,使AB=AC=
5
,BC=
2
;
小明同學(xué)的做法是:由勾股定理,得AB=AC=
22+12
=
5
,BC=
12+12
=
2
,于是畫出線段AB、AC、BC,從而畫出格點(diǎn)△ABC.
(1)請(qǐng)你參考小明同學(xué)的做法,在圖2正方形網(wǎng)格(每個(gè)小正方形邊長為1)中畫出格點(diǎn)△A′B′C′(A′點(diǎn)位置如圖所示),使A′B′=A′C′=5,B′C′=
10
.(直接畫出圖形,不寫過程);
(2)觀察△ABC與△A′B′C′的形狀,猜想∠BAC與∠B′A′C′有怎樣的數(shù)量關(guān)系,并證明你的猜想.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•禪城區(qū)模擬)閱讀下列材料:
正方形網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).以格點(diǎn)為頂點(diǎn)的多邊形叫格點(diǎn)多邊形,若格點(diǎn)多邊形至少有一邊是曲線,則稱其為曲邊格點(diǎn)多邊形.

(1)求圖(1)中格點(diǎn)三角形的面積;
(2)在圖(2)中畫出一個(gè)格點(diǎn)梯形,使它的面積等于9;(只需畫出,不必說明)
(3)在圖(3)中畫出一個(gè)曲邊格點(diǎn)多邊形,使它的面積等于25,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料:

正方形網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).以格點(diǎn)為頂點(diǎn)的多邊形叫格點(diǎn)多邊形,若格點(diǎn)多邊形至少有一邊是曲線,則稱其為曲邊格點(diǎn)多邊形.
(1)求圖(1)中格點(diǎn)三角形的面積;
(2)在圖(2)中畫出一個(gè)格點(diǎn)梯形,使它的面積等于9;(只需畫出,不必說明)
(3)在圖(3)中畫出一個(gè)曲邊格點(diǎn)多邊形,使它的面積等于25,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年云南省昭通市(中專)高中招生統(tǒng)一模擬考試數(shù)學(xué)試卷(3)(解析版) 題型:解答題

閱讀下列材料:

正方形網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),以格點(diǎn)為頂點(diǎn)的三角形叫格點(diǎn)三角形.

數(shù)學(xué)老師給小明同學(xué)出了一道題目:在圖正方形網(wǎng)格(每個(gè)小正方形邊長為1)中畫出格點(diǎn)△ABC,使,;

小明同學(xué)的做法是:由勾股定理,得,,于是畫出線段AB、AC、BC,從而畫出格點(diǎn)△ABC.

(1)請(qǐng)你參考小明同學(xué)的做法,在圖中的正方形網(wǎng)格(每個(gè)小正方形邊長為1)中畫出格點(diǎn)△點(diǎn)位置如圖所示),使=5,.(直接畫出圖形,不寫過程);

(2)觀察△ABC與△的形狀,猜想∠BAC與∠有怎樣的數(shù)量關(guān)系,并證明你的猜想.

      

 

查看答案和解析>>

同步練習(xí)冊(cè)答案