直線y=-4x+a-1不經(jīng)過(guò)第三象限,則a的取值范圍是________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:新教材完全解讀 九年級(jí)數(shù)學(xué) (下冊(cè)) (配華東師大版新課標(biāo)) 華東師大版新課標(biāo) 題型:022
拋物線y=4x2和直線y=-4x的交點(diǎn)坐標(biāo)為_(kāi)_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:新教材完全解讀 九年級(jí)數(shù)學(xué) (下冊(cè)) (配華東師大版新課標(biāo)) 華東師大版新課標(biāo) 題型:044
已知拋物線y=x2-4x+c的頂點(diǎn)P在直線y=-4x-1上.
(1)求c的值;
(2)求拋物線與x軸兩交點(diǎn)M,N的坐標(biāo);
(3)求△PMN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2010年天津市初中畢業(yè)生學(xué)業(yè)考試數(shù)學(xué)試卷 題型:044
在平面直角坐標(biāo)系中,已知拋物線y=-x2+bx+c與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為E.
(Ⅰ)若b=2,c=3,求此時(shí)拋物線頂點(diǎn)E的坐標(biāo);
(Ⅱ)將(Ⅰ)中的拋物線向下平移,若平移后,在四邊形ABEC中滿足
S△BCE=S△ABC,求此時(shí)直線BC的解析式;
(Ⅲ)將(Ⅰ)中的拋物線作適當(dāng)?shù)钠揭,若平移后,在四邊?I>ABEC中滿足S△BCE=2S△AOC,且頂點(diǎn)E恰好落在直線y=-4x+3上,求此時(shí)拋物線的解析式
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013屆江蘇省無(wú)錫市前洲中學(xué)九年級(jí)下學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題
閱讀下列材料:
我們知道,一次函數(shù)y=kx+b的圖象是一條直線,而y=kx+b經(jīng)過(guò)恒等變形可化為直線的另一種表達(dá)形式:Ax+Bx+C=0(A、B、C是常數(shù),且A、B不同時(shí)為0).如圖1,點(diǎn)P(m,n)到直線l:Ax+Bx+C=0的距離(d)計(jì)算公式是:d= .
例:求點(diǎn)P(1,2)到直線y= x-的距離d時(shí),先將y= x-化為5x-12y-2=0,再由上述距離公式求得d= = .
解答下列問(wèn)題:
如圖2,已知直線y=-x-4與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=x2-4x+5上的一點(diǎn)M(3,2).
(1)求點(diǎn)M到直線AB的距離.
(2)拋物線上是否存在點(diǎn)P,使得△PAB的面積最小?若存在,求出點(diǎn)P的坐標(biāo)及△PAB面積的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com