【題目】如圖,防洪大堤的橫斷面是梯形,背水坡AB的坡比i=1:,且AB=30m,李亮同學(xué)在大堤上A點處用高1.5m的測量儀測出高壓電線桿CD頂端D的仰角為30°,己知地面BC寬30m,求高壓電線桿CD的高度(結(jié)果保留三個有效數(shù)字,1.732)

【答案】48.8

【解析】

試題分析:由i的值求得大堤的高度AE,點A到點B的水平距離BE,從而求得MN的長度,由仰角求得DN的高度,從而由DN,AM,h求得高度CD.

試題解析:延長MA交直線BC于點E,

AB=30,i=1:

AE=15,BE=15

MN=BC+BE=30+15,

仰角為30°,

DN==10+15,

CD=DN+NC=DN+MA+AE=10+15+15+1.517.32+31.548.8(m).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6張如圖1的長為a,寬為b(a>b)的小長方形紙片,按圖2方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長度變化時,按照同樣的放置方式,S始終保持不變,則a,b滿足(
A.a=2b
B.a=3b
C.a=4b
D.a=b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀,再回答問題:要比較代數(shù)式A、B的大小,可以作差A(yù)﹣B,比較差的取值,當(dāng)A﹣B>0時,有A>B;當(dāng)A﹣B=0時,有A=B;當(dāng)A﹣B<0時,有A<B.”例如,當(dāng)a<0時,比較a2和a(a+1)的大。梢杂^察a2﹣a(a+1)=a2﹣a2﹣a=﹣a.因為當(dāng)a<0時,﹣a>0,所以當(dāng)a<0時,a2>a(a+1).
(1)已知M=(x﹣2)(x﹣16),N=(x﹣4)(x﹣8),比較M、N的大小關(guān)系.
(2)某種產(chǎn)品的原料提價,因而廠家決定對于產(chǎn)品進行提價,現(xiàn)有三種方案: 方案1:第一次提價p%,第二次提價q%;
方案2:第一次提價q%,第二次提價p%;
方案3:第一、二次提價均為 %.
如果設(shè)原價為a元,請用含a、p、q的式子表示提價后三種方案的價格.
方案1:;方案2:;方案3:
如果p,q是不相等的正數(shù),三種方案哪種提價最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a>b,則下列不等式一定成立的是(  )

A. 1-a<1-b B. -a>-b C. ac2>bc2 D. a-2<b-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是某村一遍若干畝土地的示意圖,在黨的十六大精神的指導(dǎo)下,為進一步加大農(nóng)村經(jīng)濟結(jié)構(gòu)調(diào)整的力度,某村決定把這塊土地平均分給四位花農(nóng)種植,請你幫他們分一分,提供兩種分法.要求:畫出圖形,并簡要說明分法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點O與原點重合,頂點A,C分別在x軸、y軸上,反比例函數(shù)y=(k0,x>0)的圖象與正方形的兩邊AB、BC分別交于點M、N,連接OM、ON、MN.

(1)證明OCN≌△OAM;

(2)若NOM=45°,MN=2,求點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是(

A. 對角線相等的四邊形是矩形

B. 對角線互相垂直的矩形是正方形

C. 順次聯(lián)結(jié)矩形各邊中點所得四邊形是正方形

D. 正多邊形都是中心對稱圖形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算正確的是( 。

A. a34a7B. a3+a4a7

C. (﹣a3(﹣a4a7D. a7÷(﹣a4a3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為2的扇形AOB中,AOB=90°,點C是弧AB上的一個動點(不與點A、B重合)ODBC,OEAC,垂足分別為D、E.

(1)當(dāng)BC=1時,求線段OD的長;

(2)在DOE中是否存在長度保持不變的邊?如果存在,請指出并求其長度,如果不存在,請說明理由;(3)設(shè)BD=x,DOE的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域.

查看答案和解析>>

同步練習(xí)冊答案