(12分)如圖,在平面直角坐標(biāo)系中,拋物線向左平移1個單位,再向下平移4個單位,得到拋物線.所得拋物線與軸交于兩點(點在點的左邊),與軸交于點,頂點為.
(1)求的值;
(2)求直線AC的函數(shù)解析式。
(3)在線段上是否存在點,使相似.若存在,求出點的坐標(biāo);若不存在,說明理由.


(1)的頂點坐標(biāo)為(0,0),
的頂點坐標(biāo)
.······························ 3分
(2)由(1)得.
當(dāng)時,
.
.
.····························· 4分
當(dāng)時,,
點坐標(biāo)為.
設(shè)直線AC的函數(shù)解析式為y=kx+b,于是


故所求直線AC的函數(shù)解析式為y =··················· 7分
(3)存在.
由(2)知,為等腰直角三角形,,
連接,過點作于點,
.
①若,則
,即.
,
.

.
點在第三象限,
.····························· 10分
②若,則
,即.
,
.
點在第三象限,
.
綜上①、②所述,存在點使相似,且這樣的點有兩個,其坐標(biāo)分別為.   12分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案