【題目】如圖,點(diǎn)P為正方形ABCD的對(duì)角線BD上任一點(diǎn),過(guò)點(diǎn)P作PE⊥BC,PF⊥CD,垂足分別為點(diǎn)E、F,連接EF,下列結(jié)論①△FPD是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP,其中正確的結(jié)論是(請(qǐng)?zhí)钚蛱?hào))

【答案】①②④
【解析】解:如圖,
∵P為正方形ABCD的對(duì)角線BD上任一點(diǎn),
∴PA=PC,∠C=90°,
∵過(guò)點(diǎn)P作PE⊥BC于點(diǎn)E,PF⊥CD,
∴∠PEC=∠DFP=∠PFC=∠C=90°,
∴四邊形PECF是矩形,
∴PC=EF,
∴PA=EF,故②正確,
∵BD是正方形ABCD的對(duì)角線,
∴∠ABD=∠BDC=∠DBC=45°,
∵∠PFC=∠C=90°,
∴PF∥BC,
∴∠DPF=45°,
∵∠DFP=90°,
∴△FPD是等腰直角三角形,故①正確,
在△PAB和△PCB中,
,
∴△PAB≌△PCB,
∴∠BAP=∠BCP,
在矩形PECF中,∠PFE=∠FPC=∠BCP,
∴∠PFE=∠BAP.故④正確,
∵點(diǎn)P是正方形對(duì)角線BD上任意一點(diǎn),
∴AD不一定等于PD,
只有∠BAP=22.5°時(shí),AD=PD,故③錯(cuò)誤,
故答案為:①②④.
用正方形的性質(zhì)和垂直的定義判斷出四邊形PECF是矩形,從而判定②正確;直接用正方形的性質(zhì)和垂直得出①正確,利用全等三角形和矩形的性質(zhì)得出④正確,由點(diǎn)P是正方形對(duì)角線上任意一點(diǎn),說(shuō)明AD和PD不一定相等,得出③錯(cuò)誤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,則下列結(jié)論中不正確的是(
A.∠B=48°
B.∠AED=66°
C.∠A=84°
D.∠B+∠C=96°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,直徑CD⊥弦AB,則下列結(jié)論中正確的是(
A.AD=AB
B.∠BOC=2∠D
C.∠D+∠BOC=90°
D.∠D=∠B

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明平時(shí)喜歡玩“QQ農(nóng)場(chǎng)游戲,本學(xué)期初二年級(jí)數(shù)學(xué)備課組組織了幾次數(shù)學(xué)反饋性測(cè)試,小明的數(shù)學(xué)成績(jī)?nèi)缦卤恚?/span>

月份x(月)

9

10

11

12


成績(jī)y(分)

90

80

70

60


1)以月份為x軸,成績(jī)?yōu)?/span>y軸,根據(jù)上表提供的數(shù)據(jù)在下列直角坐標(biāo)系中描點(diǎn);

2)觀察中所描點(diǎn)的位置關(guān)系,照這樣的發(fā)展趨勢(shì),猜想yx之間的函數(shù)關(guān)系,并求出所猜想的函數(shù)表達(dá)式;

3)若小明繼續(xù)沉溺于“QQ農(nóng)場(chǎng)游戲,照這樣的發(fā)展趨勢(shì),請(qǐng)你估計(jì)元月份的期末考試中小明的數(shù)學(xué)成績(jī),并用一句話對(duì)小明提出一些建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校開展青少年科技創(chuàng)新比賽活動(dòng),“喜洋洋代表隊(duì)設(shè)計(jì)了一個(gè)遙控車沿直線軌道AC做勻速直線運(yùn)動(dòng)的模型.甲、乙兩車同時(shí)分別從A,B出發(fā),沿軌道到達(dá)C,AC,甲的速度是乙的速度的1.5,設(shè)t分后甲、乙兩遙控車與B處的距離分別為d1,d2(單位:),d1,d2t的函數(shù)關(guān)系如圖,試根據(jù)圖象解決下列問(wèn)題.

(1)填空乙的速度v2=________/;

(2)寫出d1t的函數(shù)表達(dá)式;

(3)若甲、乙兩遙控車的距離超過(guò)10米時(shí)信號(hào)不會(huì)產(chǎn)生相互干擾,試探究什么時(shí)間兩遙控車的信號(hào)不會(huì)產(chǎn)生相互干擾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD,點(diǎn)E在CB的延長(zhǎng)線上,聯(lián)結(jié)AE、DE,DE與邊AB交于點(diǎn)F,F(xiàn)G∥BE且與AE交于點(diǎn)G.
(1)求證:GF=BF.
(2)在BC邊上取點(diǎn)M,使得BM=BE,聯(lián)結(jié)AM交DE于點(diǎn)O.求證:FOED=ODEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.平面直角坐標(biāo)系xOy的原點(diǎn)O在格點(diǎn)上,x軸、y軸都在網(wǎng)格線上,線段A、B在格點(diǎn)上.
(1)將線段AB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段A1B1 , 試在圖中畫出線段A1B1
(2)在(1)的條件下,線段A2B2與線段A1B1關(guān)于原點(diǎn)O成中心對(duì)稱,請(qǐng)?jiān)趫D中畫出線段A2B2
(3)在(1)、(2)的條件下,點(diǎn)P是此平面直角坐標(biāo)系內(nèi)的一點(diǎn),當(dāng)以點(diǎn)A、B、B2、P為頂點(diǎn)的四邊形為平行四邊形時(shí),請(qǐng)你直接寫出點(diǎn)P的坐標(biāo):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,CD⊥AB于點(diǎn)D,⊙D經(jīng)過(guò)點(diǎn)B,與BC交于點(diǎn)E,與AB交與點(diǎn)F.已知tanA= ,cot∠ABC= ,AD=8.

(1)求⊙D的半徑;
(2)求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】求值:

(1)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.

(2)已知實(shí)數(shù)a、b滿足(a﹣2)2+=0,求b﹣a的算術(shù)平方根

(3)已知y=,求的值

查看答案和解析>>

同步練習(xí)冊(cè)答案