【題目】如圖,AOB=90°,反比例函數(shù)y=﹣(x<0)的圖象過點(diǎn)A(﹣1,a),反比例函數(shù)y=(k>0,x>0)的圖象過點(diǎn)B,且ABx軸.

(1)求a和k的值;

(2)過點(diǎn)B作MNOA,交x軸于點(diǎn)M,交y軸于點(diǎn)N,交雙曲線y=于另一點(diǎn)C,求OBC的面積.

【答案】(1)a=2,k=8(2) =15.

【解析】分析:(1)把A(-1,a)代入反比例函數(shù)得到A(-1,2),過AAEx軸于E,BFx軸于F,根據(jù)相似三角形的性質(zhì)得到B(4,2),于是得到k=4×2=8;
(2)求的直線AO的解析式為y=-2x,設(shè)直線MN的解析式為y=-2x+b,得到直線MN的解析式為y=-2x+10,解方程組得到C(1,8),于是得到結(jié)論.

詳解:(1)反比例函數(shù)y=﹣(x<0)的圖象過點(diǎn)A(﹣1,a),

∴a=﹣=2,

∴A(﹣1,2),

過A作AEx軸于E,BF⊥⊥x軸于F,

∴AE=2,OE=1,

∵AB∥x軸,

∴BF=2,

∵∠AOB=90°,

∴∠EAO+∠AOE=∠AOE+∠BOF=90°,

∴∠EAO=∠BOF,

∴△AEO∽△OFB,

,

∴OF=4,

∴B(4,2),

∴k=4×2=8;

(2)∵直線OA過A(﹣1,2),

直線AO的解析式為y=﹣2x,

∵M(jìn)N∥OA,

設(shè)直線MN的解析式為y=﹣2x+b,

∴2=﹣2×4+b,

∴b=10,

直線MN的解析式為y=﹣2x+10,

直線MN交x軸于點(diǎn)M,交y軸于點(diǎn)N,

∴M(5,0),N(0,10),

得,,

∴C(1,8),

∴△OBC的面積=S△OMN﹣S△OCN﹣S△OBM=5×10﹣×10×1﹣×5×2=15.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生在素質(zhì)教育基地進(jìn)行社會(huì)實(shí)踐活動(dòng),幫助農(nóng)民伯伯采摘了黃瓜和茄子共40kg,了解到這些蔬菜的種植成本共42元,還了解到如下信息:黃瓜的種植成本是1/kg,售價(jià)為1.5/kg;茄子的種植成本是1.2/kg,售價(jià)是2/kg

(1)請(qǐng)問采摘的黃瓜和茄子各多少千克?

(2)這些采摘的黃瓜和茄子可賺多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD為正方形,點(diǎn)E為線段AC上一點(diǎn),連接DE,過點(diǎn)EEF⊥DE,交射線BC于點(diǎn)F,以DE、EF為鄰邊作矩形DEFG,連接CG.

(1)如圖1,求證:矩形DEFG是正方形;

(2)若AB=2,CE=,求CG的長(zhǎng)度;

(3)當(dāng)線段DE與正方形ABCD的某條邊的夾角是30°時(shí),直接寫出∠EFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊直角三角形紙片,兩直角邊AB6,BC8,將△ABC折疊,使AB落在斜邊AC上,折痕為AD,則BD的長(zhǎng)為( )

A. 6B. 5C. 4D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是16,點(diǎn)E在邊AB上,AE=3,點(diǎn)F是邊BC上不與點(diǎn)B、C重合的一個(gè)動(dòng)點(diǎn),把△EBF沿EF折疊,點(diǎn)B落在B′處,若△CDB′恰為等腰三角形,則DB′的長(zhǎng)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=32°,將△ABC沿直線m翻折,點(diǎn)B落在點(diǎn)D的位置,則∠1-2的度數(shù)是(

A. 32° B. 64° C. 65° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園安全受到全社會(huì)的廣泛關(guān)注,我市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學(xué)生共有   人,扇形統(tǒng)計(jì)圖中了解部分所對(duì)應(yīng)扇形的圓心角為   °;

(2)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù)為  人;

(3)若從對(duì)校園安全知識(shí)達(dá)到了解程度的3個(gè)女生A、B、C2個(gè)男生M、N中分別隨機(jī)抽取1人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹狀圖或列表法求出恰好抽到女生A的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ΔP1OA1,ΔP2A1A2是等腰直角三角形,點(diǎn)P1、P2在函數(shù)y=(x>0)的圖象上,斜邊OA1、A1A2都在x軸上,則點(diǎn)A2的坐標(biāo)是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在直角坐標(biāo)系內(nèi)的位置如圖所示.

(1)分別寫出A、B、C的坐標(biāo);

(2)請(qǐng)?jiān)谶@個(gè)坐標(biāo)系內(nèi)畫出A1B1C1,使A1B1C1ABC關(guān)于y軸對(duì)稱,并寫出B1的坐標(biāo);

(3)請(qǐng)?jiān)谶@個(gè)坐標(biāo)系內(nèi)畫出A2B2C2,使A2B2C2ABC關(guān)于原點(diǎn)對(duì)稱,并寫出A2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案