如圖,在正方形ABCD的外側(cè),作等邊△ADE,BE、CE分別交AD于G、H,設(shè)△CDH、△GHE的面積分別為S1、S2,則( )

A.3S1=2S2
B.2S1=3S2
C.2S1=S2
D.S1=2S2
【答案】分析:本題中很明顯△EGH∽△EBC,根據(jù)兩三角形的高的比可得出GH和BC的比例關(guān)系;然后通過(guò)證△ABG≌△DCH,可得出AG=DH,那么可設(shè)正方形的邊長(zhǎng),即可表示出GH、DH以及△GHE的高,進(jìn)而可根據(jù)三角形的面積公式分別得出△CDH和△EGH的面積表達(dá)式,得出兩三角形的比例關(guān)系.
解答:解:作EF垂直于A(yíng)D,則△EFH∽△CDH,
又∵EF:CD=EF:AD=:2,
∴S△EHF:S1=3:4
∵△EGH為等腰三角形,S△ABG=S1,S2=2S△EFH
∴3S1=2S2
故選A.
點(diǎn)評(píng):此題考查了相似三角形的判定和性質(zhì):
①如果兩個(gè)三角形的三組對(duì)應(yīng)邊的比相等,那么這兩個(gè)三角形相似;
②如果兩個(gè)三角形的兩條對(duì)應(yīng)邊的比相等,且?jiàn)A角相等,那么這兩個(gè)三角形相似;
③如果兩個(gè)三角形的兩個(gè)對(duì)應(yīng)角相等,那么這兩個(gè)三角形相似.
平行于三角形一邊的直線(xiàn)截另兩邊或另兩邊的延長(zhǎng)線(xiàn)所組成的三角形與原三角形相似.相似三角形的對(duì)應(yīng)邊成比例,對(duì)應(yīng)角相等.相似三角形的對(duì)應(yīng)高、對(duì)應(yīng)中線(xiàn),對(duì)應(yīng)角平分線(xiàn)的比等于相似比;相似三角形的周長(zhǎng)比等于相似比;相似三角形的面積比等于相似比的平方.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說(shuō)明這兩個(gè)三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線(xiàn)精英家教網(wǎng),交BC于點(diǎn)E.
(1)求證:點(diǎn)E是邊BC的中點(diǎn);
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長(zhǎng)度;
(3)若以點(diǎn)O,D,E,C為頂點(diǎn)的四邊形是正方形,試判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點(diǎn)E是邊AC的中點(diǎn),連接DE,DE的延長(zhǎng)線(xiàn)與邊BC相交于點(diǎn)F,AG∥BC,交DE于點(diǎn)G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長(zhǎng)為3+
3

(1)如圖①,正方形EFPN的頂點(diǎn)E、F在邊AB上,頂點(diǎn)N在邊AC上,在正三角形ABC及其內(nèi)部,以點(diǎn)A為位似中心,作正方形EFPN的位似正方形E′F′P′N(xiāo)′,且使正方形E′F′P′N(xiāo)′的面積最大(不要求寫(xiě)作法);
(2)求(1)中作出的正方形E′F′P′N(xiāo)′的邊長(zhǎng);
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點(diǎn)P、N分別在邊CB、CA上,求這兩個(gè)正方形面積和的最大值和最小值,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對(duì)角線(xiàn)交于點(diǎn)O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案