【題目】如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣3,0)、(0,4),拋物線y=x2+bx+c經(jīng)過B點(diǎn),且頂點(diǎn)在直線y=上.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)若△DCE是由△ABO沿x軸向右平移得到的,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說明理由.
(3)在(2)的條件下,若M點(diǎn)是CD所在直線下方該拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN平行于y軸交CD于點(diǎn)N.設(shè)點(diǎn)M的橫坐標(biāo)為t,MN的長度為s,求s與t之間的函數(shù)關(guān)系式,寫出自變量t的取值范圍,并求s取大值時(shí),點(diǎn)M的坐標(biāo).
【答案】(1)y=x2﹣x+4;(2)點(diǎn)C和點(diǎn)D在所求拋物線上;(3)s=﹣(t﹣)2+,當(dāng)s最大時(shí),此時(shí)點(diǎn)M的坐標(biāo)為(,).
【解析】
(1)已知了拋物線上A、B點(diǎn)的坐標(biāo)以及拋物線的對稱軸方程,可用待定系數(shù)法求出拋物線的解析式.
(2)首先求出AB的長,將A、B的坐標(biāo)向右平移AB個(gè)單位,即可得出C、D的坐標(biāo),再代入拋物線的解析式中進(jìn)行驗(yàn)證即可.
(3)根據(jù)C、D的坐標(biāo),易求得直線CD的解析式;那么線段MN的長實(shí)際是直線BC與拋物線的函數(shù)值的差,可將x=t代入兩個(gè)函數(shù)的解析式中,得出的兩函數(shù)值的差即為l的表達(dá)式,由此可求出l、t的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)即可求出l取最大值時(shí),點(diǎn)M的坐標(biāo).
(1)∵y=x2+bx+c的頂點(diǎn)在直線x=上,
∴可設(shè)所求拋物線對應(yīng)的函數(shù)關(guān)系式為y=(x﹣)2+m,
∵點(diǎn)B(0,4)在此拋物線上,
∴4=(0﹣)2+m,
∴m=﹣,
∴所求函數(shù)關(guān)系式為:y=(x﹣)2﹣=x2﹣x+4;
(2)在Rt△ABO中,OA=3,OB=4,
∴AB==5.
∵四邊形ABCD是菱形,
∴BC=CD=DA=AB=5,
∵A、B兩點(diǎn)的坐標(biāo)分別為(﹣3,0))、(0,4),
∴C、D兩點(diǎn)的坐標(biāo)分別是(5,4)、(2,0);
當(dāng)x=5時(shí),y=×52﹣×5+4=4,
當(dāng)x=2時(shí),y=×22﹣×2+4=0,
∴點(diǎn)C和點(diǎn)D在所求拋物線上;
(3)設(shè)直線CD對應(yīng)的函數(shù)關(guān)系式為y=kx+n,
則,
解得:;
∴y=x﹣.
∵MN∥y軸,M點(diǎn)的橫坐標(biāo)為t,
∴N點(diǎn)的橫坐標(biāo)也為t;
則yM=t2﹣t+4,yN=t﹣,
∴s=y(tǒng)N﹣yM=(t﹣)﹣(t2﹣t+4)
=﹣(t﹣)2+,
∵﹣<0,
∴當(dāng)t=時(shí),s最大=,此時(shí)yM=×()2﹣×+4=.
此時(shí)點(diǎn)M的坐標(biāo)為(,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線CD是經(jīng)過∠BCA頂點(diǎn)C的一條直線,CA=CB,點(diǎn)E、F分別是直線CD上的兩點(diǎn),且∠BEC=∠CFA=∠BCA,
(1)如圖1,當(dāng)∠BCA=90時(shí),則BE與CF的數(shù)量關(guān)系是:______________
(2)如圖2,當(dāng)∠BCA為銳角時(shí),(1)中的數(shù)量關(guān)系是否依然成立?若成立,請證明
(3)如圖 3,當(dāng)∠BCA為鈍角時(shí),請說出EF、BE、AF三條線段的數(shù)量關(guān)系(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b是兩個(gè)任意獨(dú)立的一位正整數(shù), 則點(diǎn)(a,b)在拋物線y=ax2-bx上方的概率是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在坐標(biāo)系中畫出函數(shù)的圖象,
判斷點(diǎn)是否在圖象上?為什么?
已知點(diǎn)在該函數(shù)圖象上,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠要招聘甲、乙兩種工種的工人人,甲、乙兩種工種的工人的月工資分別為元和元
設(shè)招聘甲種工種工人人,工廠付給用、乙兩種工種的工人工資共元,寫出 (元)與(人)的函數(shù)關(guān)系式;
現(xiàn)要求招聘的乙種工種的人數(shù)不少于甲種工種人數(shù)的倍,問甲、乙兩種工種各招聘多少人時(shí),可使得每月所付的工資最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于 A(﹣1,0),B(4,0),C
(0,﹣4)三點(diǎn),點(diǎn) P 是直線 BC 下方拋物線上一動(dòng)點(diǎn).
(1) 求這個(gè)二次函數(shù)的解析式;
(2) 是否存在點(diǎn) P,使△POC 是以 OC 為底邊的等腰三角形?若存在,求出 P 點(diǎn)坐標(biāo);若不存在,請說明理由;
(3) 在拋物線上是否存在點(diǎn) D(與點(diǎn) A 不重合)使得 S△DBC=S△ABC,若存在,求出點(diǎn) D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D,E分別在等邊△ABC的邊AB,BC上,將△BDE沿直線DE翻折,使點(diǎn)B落在B1處.若∠ADB1=70°,則∠CEB1=___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c與x軸交于A(1,0),B(3,0),與y軸交于C(0,3),拋物線頂點(diǎn)為D點(diǎn).
(1)求此拋物線解析式;
(2)如圖1,點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),且在對稱軸右側(cè),若△ADP面積為3,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,PA交對稱軸于點(diǎn)E,如圖2,過E點(diǎn)的任一條直線與拋物線交于M,N兩點(diǎn),直線MD交直線y=﹣3于點(diǎn)F,連結(jié)NF,求證:NF∥y軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)在一個(gè)寬度為w的小巷內(nèi),一個(gè)梯子長為a,梯子的腳位于A點(diǎn),將梯子的頂端放在一堵墻上Q點(diǎn)時(shí),Q離開地面的高度為k,梯子與地面的夾角為45°:將該梯子的頂端放在另一堵墻上R點(diǎn)時(shí),R點(diǎn)離開地面的高度為h,且此時(shí)梯子與地面的夾角為75°,則小巷寬度w=( )
A.hB.kC.aD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com