【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(0,4),直線y=x﹣3與x軸、y軸分別交于點(diǎn)A,B,點(diǎn)M是直線AB上的一個(gè)動(dòng)點(diǎn),則PM長(zhǎng)的最小值為

【答案】
【解析】如圖,過點(diǎn)P作PM⊥AB,則:∠PMB=90°,

當(dāng)PM⊥AB時(shí),PM最短,
因?yàn)橹本y=x﹣3與x軸、y軸分別交于點(diǎn)A,B,
可得點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(0,﹣3),
在Rt△AOB中,AO=4,BO=3,AB==5,
∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,
∴△PBM∽△ABO,
=,
即:,
所以可得:PM=
認(rèn)真審題,根據(jù)垂線段最短得出PM⊥AB時(shí)線段PM最短,分別求出PB、OB、OA、AB的長(zhǎng)度,利用△PBM∽△ABO,即可求出本題的答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點(diǎn)A(﹣2,0),與x軸夾角為30°,將△ABO沿直線AB翻折,點(diǎn)O的對(duì)應(yīng)點(diǎn)C恰好落在雙曲線y=(k≠0)上,則k的值為( 。

A.4
B.-2
C.
D.-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“2015揚(yáng)州鑒真國際半程馬拉松”的賽事共有三項(xiàng):A.“半程馬拉松”、B.“10公里”、C.“迷你馬拉松”.小明和小剛參與了該項(xiàng)賽事的志愿者服務(wù)工作,組委會(huì)隨機(jī)將志愿者分配到三個(gè)項(xiàng)目組.
(1)小明被分配到“迷你馬拉松”項(xiàng)目組的概率為 。
(2)求小明和小剛被分配到不同項(xiàng)目組的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為1,以對(duì)角線AC為邊作第二個(gè)正方形,再以對(duì)角線AE為邊作第三個(gè)正方形AEGH,如此下去,第n個(gè)正方形的邊長(zhǎng)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,將含30°的三角尺的直角頂點(diǎn)C落在第二象限.其斜邊兩端點(diǎn)A、B分別落在x軸、y軸上,且AB=12cm。

(1)(1)若OB=6cm.①求點(diǎn)C的坐標(biāo);②若點(diǎn)A向右滑動(dòng)的距離與點(diǎn)B向上滑動(dòng)的距離相等,求滑動(dòng)的距離
(2)點(diǎn)C與點(diǎn)O的距離的最大值= cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,觀測(cè)點(diǎn)A、旗桿DE的底端D、某樓房CB的底端C三點(diǎn)在一條直線上,從點(diǎn)A處測(cè)得樓頂端B的仰角為22°,此時(shí)點(diǎn)E恰好在AB上,從點(diǎn)D處測(cè)得樓頂端B的仰角為38.5°.已知旗桿DE的高度為12米,試求樓房CB的高度.(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)在“五一”期間舉行促銷活動(dòng),根據(jù)顧客按商品標(biāo)價(jià)一次性購物總額,規(guī)定相應(yīng)的優(yōu)惠方法:①如果不超過500元,則不予優(yōu)惠;②如果超過500元,但不超過800元,則按購物總額給予8折優(yōu)惠;③如果超過800元,則其中800元給予8折優(yōu)惠,超過800元的部分給予6折優(yōu)惠.促銷期間,小紅和她母親分別看中一件商品,若各自單獨(dú)付款,則應(yīng)分別付款480元和520元;若合并付款,則她們總共只需付款 元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=2x﹣4的圖象與x軸、y軸分別相交于點(diǎn)A、B,點(diǎn)P在該函數(shù)的圖象上,P到x軸、y軸的距離分別為d1、d2

(1)當(dāng)P為線段AB的中點(diǎn)時(shí),求d1+d2的值。
(2)直接寫出d1+d2的范圍,并求當(dāng)d1+d2=3時(shí)點(diǎn)P的坐標(biāo)。
(3)若在線段AB上存在無數(shù)個(gè)P點(diǎn),使d1+ad2=4(a為常數(shù)),求a的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:
(1)x(x﹣3)+x﹣3=0
(2)x2﹣4x+1=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案