【題目】如圖,已知點(diǎn)C在⊙O,AC=AB,動點(diǎn)P與點(diǎn)C位于直徑AB的異側(cè),點(diǎn)P在半圓弧AB上運(yùn)動(不與A.B兩點(diǎn)重合),連結(jié)BP,過點(diǎn)C作直線PB的垂線CD交直線PBD點(diǎn),連結(jié)CP.

(1)如圖1,在點(diǎn)P運(yùn)動過程中,求∠CPD的度數(shù);

(2)如圖2,在點(diǎn)P運(yùn)動過程中,當(dāng)CPAB時(shí),AC=2時(shí),求△BPC的周長

【答案】160°;(2

【解析】

1)由AC=AB,動點(diǎn)P與點(diǎn)C位于直徑AB的異側(cè),以求得∠ABC=30°,繼而可得出∠ CPD的度數(shù);(2)先證明△ CBP是等邊三角形,再求出BC的長,最后求出△ CBP的周長

(1)AB是直徑,

∴∠ACB=90°,

AC=AB

∴∠ABC=30°,

∴∠A=90°ABC=60°,

∴∠CPD=A=60°;

2)∵∠A=60°

∴∠BPC=A=60°

PCAB,AB是直徑

=

∴∠ABP=ABC=30°

∴∠CPB=60°

∴△CBP是等邊三角形

BP=BC=CP

AC=2

BC=AC=

∴△BCP的周長=BP+BC+CP=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣有AB兩個(gè)大型蔬菜基地,共有蔬菜700噸.若將A基地的蔬菜全部運(yùn)往甲市所需費(fèi)用與B基地的蔬菜全部運(yùn)往甲市所需費(fèi)用相同.從AB兩基地運(yùn)往甲、乙兩市的運(yùn)費(fèi)單價(jià)如下表:

1)求A、B兩個(gè)蔬菜基地各有蔬菜多少噸?

2)現(xiàn)甲市需要蔬菜260噸,乙市需要蔬菜440噸.設(shè)從A基地運(yùn)送噸蔬菜到甲市,請問怎樣調(diào)運(yùn)可使總運(yùn)費(fèi)最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市茶葉專賣店銷售某品牌茶葉,其進(jìn)價(jià)為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價(jià)每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請回答:

1)每千克茶葉應(yīng)降價(jià)多少元?

2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價(jià)的 幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,已知∠C=90°,∠B=55°,點(diǎn)D在邊BC上,BD=2CD.把線段BD 繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)α(0α180)度后,如果點(diǎn)B恰好落在RtABC的邊上,那么α=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+x6x軸兩個(gè)交點(diǎn)分別是A、B(點(diǎn)A在點(diǎn)B的左側(cè))

(1)A、B的坐標(biāo);

(2)利用函數(shù)圖象,寫出y0時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小英同時(shí)擲甲、乙兩個(gè)質(zhì)地均勻的骰子(6個(gè)面上分別標(biāo)有1,23,4,5,66個(gè)數(shù)字).記甲朝上的一面數(shù)字為x,乙朝上的一面數(shù)字為y,這樣確定點(diǎn)P的一個(gè)坐標(biāo)(xy),那么點(diǎn)P落在y上的概率是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),平行于x軸的直線與拋物線Lyax2相交于A,B兩點(diǎn)(點(diǎn)B在第一象限),點(diǎn)DAB的延長線上.

1)已知a1,點(diǎn)B的縱坐標(biāo)為2

①如圖1,向右平移拋物線L使該拋物線過點(diǎn)B,與AB的延長線交于點(diǎn)C,求AC的長.

②如圖2,若BDAB,過點(diǎn)B,D的拋物線L2,其頂點(diǎn)Mx軸上,求該拋物線的函數(shù)表達(dá)式.

2)如圖3,若BDAB,過O,B,D三點(diǎn)的拋物線L3,頂點(diǎn)為P,對應(yīng)函數(shù)的二次項(xiàng)系數(shù)為a3,過點(diǎn)PPEx軸,交拋物線LE,F兩點(diǎn),求的值,并直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD 中,AB=4,AD=a,點(diǎn)PAD上,且AP=2,點(diǎn)E是邊AB上的動點(diǎn),以PE為邊作直角∠EPF,射線PFBC于點(diǎn)F,連接EF,給出下列結(jié)論:①tanPFE=;②a的最小值為10.則下列說法正確的是( )

A.①②都對B.①②都錯C.①對②錯D.①錯②對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)ECD的中點(diǎn),將BCE沿BE折疊后得到BEF、且點(diǎn)F在矩形ABCD的內(nèi)部,將BF延長交AD于點(diǎn)G.若,則=__

查看答案和解析>>

同步練習(xí)冊答案