【題目】如圖,△ABC中,∠ACB=90°,點(diǎn)FAC延長(zhǎng)線上,,DE△ABC中位線,如果∠1=30°,DE=2,則四邊形AFED的周長(zhǎng)是________

【答案】16.

【解析】

試題根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得DE=AC,從而得到CF=DE,再根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半可得EF=2CF,利用勾股定理列式求出CE,再求出BC,然后利用勾股定理列式求出AB,從而得到AD的長(zhǎng)度,最后根據(jù)四邊形的周長(zhǎng)的定義列式計(jì)算即可得解:

∵DE△ABC中位線,∴DE=AC.

∵CF=AC,∴CF=DE=2.

∵∠1=30°,∠ACB=90°,∴EF=2CF=2×2=4.

由勾股定理得,.

∴BC=2CE=.

∵AC=2DE=2×2=4,

.

∴AD=AB=4,

四邊形AFED的周長(zhǎng)=4+4+2+4+2=16

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線,點(diǎn)上,點(diǎn)、點(diǎn)上,的角平分線于點(diǎn),過(guò)點(diǎn)于點(diǎn),己知,則的度數(shù)為(

A. 26°B. 32°C. 36°D. 42°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形沿對(duì)角線折疊,點(diǎn)落到點(diǎn)處,于點(diǎn)

1)求證:

2)若,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2臺(tái)大收割機(jī)和5臺(tái)小收割機(jī)同時(shí)工作2 h共收割小麥3.6hm2,3臺(tái)大收割機(jī)和2臺(tái)小收割機(jī)同時(shí)工作5 h共收割小麥8 hm2.1臺(tái)大收割機(jī)和1臺(tái)小收割機(jī)每小時(shí)各收割小麥多少公頃?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為4的菱形ABCD中,BD=4,E、F分別是AD、CD上的動(dòng)點(diǎn)(包含端點(diǎn)),且AE+CF=4,連接BE、EF、FB.

(1)試探究BEBF的數(shù)量關(guān)系,并證明你的結(jié)論;

(2)求EF的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為6cm的正方形ABCD中,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AB以每秒1cm的速度向點(diǎn)B運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC以每秒2cm的速度向點(diǎn)C運(yùn)動(dòng).當(dāng)點(diǎn)Q到達(dá)C點(diǎn)時(shí),點(diǎn)P同時(shí)停止,設(shè)運(yùn)動(dòng)時(shí)間為t.(注:正方形的四邊長(zhǎng)都相等,四個(gè)角都是直角)

(1)CQ的長(zhǎng)為______cm(用含的代數(shù)式表示);

(2)連接DQ并把DQ沿DC翻折,交BC延長(zhǎng)線于點(diǎn)F.連接DP、DQ、PQ.

①若,求t的值.

②當(dāng)時(shí),求t的值,并判斷是否全等,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠B50°,∠C110°,∠D90°,AEBCAF是∠BAD的平分線,與邊BC交于點(diǎn)F.求∠EAF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義直線為拋物線、b、c為常數(shù),夢(mèng)想直線;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其夢(mèng)想三角形”.

已知拋物線與其夢(mèng)想直線交于A、B兩點(diǎn)點(diǎn)A在點(diǎn)B的左側(cè),與x軸負(fù)半軸交于點(diǎn)C

填空:該拋物線的夢(mèng)想直線的解析式為______,點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;

如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將AM所在直線為對(duì)稱軸翻折,點(diǎn)C的對(duì)稱點(diǎn)為N,若為該拋物線的夢(mèng)想三角形,求點(diǎn)N的坐標(biāo);

當(dāng)點(diǎn)E在拋物線的對(duì)稱軸上運(yùn)動(dòng)時(shí),在該拋物線的夢(mèng)想直線上,是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(8分)如圖:在四邊形ABCD中,E是AB上的一點(diǎn),△ADE和△BCE都是等邊三角形,點(diǎn)P、Q、M、N分別為AB、BC、CD、DA的中點(diǎn),四邊形MNPQ什么形狀?說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案