如圖,在平行四邊形ABCD中,AE⊥AD交BD于點(diǎn)E,CF⊥BC交BD于點(diǎn)F.求證:BE=DF.
分析:根據(jù)全等三角形的判定定理AAS證得△ABE≌△CDF;然后由全等三角形的對應(yīng)邊相等即可證得結(jié)論.
解答:證明:∵四邊形ABCD是平行四邊形,
∴AB=CD(平行四邊形的對邊相等),∠BAD=∠BCD(平行四邊形的對角相等).
又∵AE⊥AD交BD于點(diǎn)E,CF⊥BC交BD于點(diǎn)F.
∴∠EAD=∠FCB=90°,
∴∠BAE=∠FCD,
在△ABE和△CDF中,
∠ABE=∠CFD
AB=CD
∠BAE=∠FCD
,
∴△ABE≌△CDF(ASA),
∴BE=DF(全等三角形的對應(yīng)邊相等).
點(diǎn)評:本題考查了全等三角形的判定與性質(zhì)、平行四邊形的性質(zhì).解答此類題目,需要利用平行四邊形的性質(zhì)結(jié)合三角形全等來解決有關(guān)邊相等的證明.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點(diǎn)O,則圖中共有
9
個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點(diǎn)M是邊AD上一點(diǎn),且DM:AD=1:3.點(diǎn)E、F分別從A、C同時出發(fā),以1厘米/秒的速度分別沿AB、CB向點(diǎn)B運(yùn)動(當(dāng)點(diǎn)F運(yùn)動到點(diǎn)B時,點(diǎn)E隨之停止運(yùn)動),EM、CD精英家教網(wǎng)的延長線交于點(diǎn)P,F(xiàn)P交AD于點(diǎn)Q.設(shè)運(yùn)動時間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時,PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
AO=
3
,OB=
5
,則下列結(jié)論中不正確的是(  )
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊答案