【題目】如圖,在ABCD中,BD是對(duì)角線,AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F,試判斷四邊形AECF是不是平行四邊形,并說(shuō)明理由.
【答案】見(jiàn)解析
【解析】試題分析:根據(jù)垂直,利用內(nèi)錯(cuò)角相等兩直線平行可得AE∥CF,在根據(jù)平行四邊形的性質(zhì)證明△ABE與△DCF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AE=CF,然后根據(jù)有一組對(duì)邊平行且相等的四邊形是平行四邊形即可證明.
試題解析:四邊形AECF是平行四邊形,理由如下:
∵AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F,
∴∠AEF=∠CFE=90°,
∴AE∥CF(內(nèi)錯(cuò)角相等,兩直線平行),
在平行四邊形ABCD中,AB=CD,AB∥CD,
∴∠ABE=∠CDF,
在△ABE與△DCF中, ,
∴△ABE≌△CDF(AAS),
∴AE=CF,
∴四邊形AECF是平行四邊形(有一組對(duì)邊平行且相等的四邊形是平行四邊形).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑 ,點(diǎn)C在⊙O上,過(guò)點(diǎn)O作交BC于點(diǎn)E,交⊙O于點(diǎn)D,CD∥AB.
(1)求證:E為OD的中點(diǎn);
(2)若CB=6,求四邊形CAOD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)P是AB上一動(dòng)點(diǎn)(不與A,B重合),對(duì)角線AC,BD相交于點(diǎn)O,過(guò)點(diǎn)P分別作AC,BD的垂線,分別交AC,BD于點(diǎn)E,F,交AD,BC于點(diǎn)M,N.下列結(jié)論:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤當(dāng)△PMN∽△AMP時(shí),點(diǎn)P是AB的中點(diǎn).其中正確的結(jié)論的個(gè)數(shù)有( 。﹤(gè).
A.5 B.4 C.3 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,把三角形ABC向上平移3個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到三角形A1B1C1.
(1)在圖中畫(huà)出三角形A1B1C1;
(2)寫(xiě)出點(diǎn)A1,B1的坐標(biāo);
(3)在y軸上是否存在一點(diǎn)P,使得三角形BCP與三角形ABC面積相等?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=3x2﹣6x+k(k為常數(shù))的圖像經(jīng)過(guò)點(diǎn)A(0.8,y1),B(1.1,y2),C( ,y3),則有( )
A.y1<y2<y3
B.y1>y2>y3
C.y3>y1>y2
D.y1>y3>y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,紙片□ABCD中,AD=5,S□ABCD=15,過(guò)點(diǎn)A作AE⊥BC,垂足為E,沿AE剪下△ABE,將它平移至△DCE'的位置,拼成四邊形AEE'D,則四邊形AEE'D的形狀為( )
A.平行四邊形 B.菱形 C.矩形 D.正方形
(2)如圖,在(1)中的四邊形紙片AEE'D中,在EE'上取一點(diǎn)F,使EF=4,剪下△AEF,剪下△AEF,將它平移至△DE'F'的位置,拼成四邊形AFF'D.
①求證:四邊形AFF'D是菱形;
②求四邊形AFF'D的兩條對(duì)角線的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)將下列證明過(guò)程補(bǔ)充完整:
已知:如圖,點(diǎn)P在CD上,已知∠BAP+∠APD=180°,∠1=∠2
求證:∠E=∠F
證明:∵∠BAP+∠APD=180°(已知)
∴ ∥ ( )
∴∠BAP= ( )
又∵∠1=∠2(已知)
∴∠BAP﹣ = ﹣∠2
即∠3= (等式的性質(zhì))
∴AE∥PF( )
∴∠E=∠F( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的邊AC上任意一點(diǎn),△ABC經(jīng)過(guò)平移后得到△A1B1C1,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P1(a+6,b﹣2).
(1)平移后的三個(gè)頂點(diǎn)坐標(biāo)分別為:.A1( ),B1( ),C1( ).
(2)在上圖中畫(huà)出平移后三角形A1B1C1;
(3)畫(huà)出△AOA1并求出△AOA1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明、小亮、小芳和兩個(gè)陌生人甲、乙同在如圖所示的地下車庫(kù)等電梯,已知兩個(gè)陌生人到1至4層的任意一層出電梯,并設(shè)甲在a層出電梯,乙在b層出電梯.
(1)請(qǐng)你用畫(huà)樹(shù)狀圖或列表法求出甲、乙二人在同一層樓出電梯的概率;
(2)小亮和小芳打賭說(shuō):“若甲、乙在同一層或相鄰樓層出電梯,則小亮勝,否則小芳勝”.該游戲是否公平?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com