【題目】在綜合與實踐課上,同學(xué)們以“一個含的直角三角尺和兩條平行線”為背景開展數(shù)學(xué)活動,如圖,已知兩直線且和直角三角形,,,.
操作發(fā)現(xiàn):
(1)在如圖1中,,求的度數(shù);
(2)如圖2,創(chuàng)新小組的同學(xué)把直線向上平移,并把的位置改變,發(fā)現(xiàn),說明理由;
實踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,將如圖中的圖形繼續(xù)變化得到如圖,平分,此時發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請直接寫出與的數(shù)量關(guān)系.
【答案】操作發(fā)現(xiàn):(1);(2)見解析;實踐探究:(3).
【解析】
(1)如圖1,根據(jù)平角定義先求出∠3的度數(shù),再根據(jù)兩直線平行,同位角相等即可得;
(2)如圖2,過點B作BD//a,則有∠2+∠ABD=180°,根據(jù)已知條件可得∠ABD =60°-∠1,繼而可得∠2+60°-∠1=180°,即可求得結(jié)論;
(3)∠1=∠2,如圖3,過點C作CD//a,由已知可得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,根據(jù)平行線的性質(zhì)可得∠BCD=∠2,繼而可求得∠1=∠BAM=60°,再根據(jù)∠BCD=∠BCA-∠DCA求得∠BCD=60°,即可求得∠1=∠2.
(1)如圖1,
∵∠BCA=90°,∠1=46°,
∴∠3=180°-∠BCA-∠1=44°,
∵a//b,
∴∠2=∠3=44°;
(2)理由如下:如圖2,過點B作BD//a,
∴∠2+∠ABD=180°,
∵a//b,
∴b//BD,
∴∠1=∠DBC,
∴∠ABD=∠ABC-∠DBC=60°-∠1,
∴∠2+60°-∠1=180°,
∴∠2-∠1=120°;
(3)∠1=∠2,理由如下:如圖3,過點C作CD//a,
∵AC平分∠BAM,
∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=2×30°=60°,
∵CD//a,
∴∠BCD=∠2,
∵a//b,
∴∠1=∠BAM=60°,b//CD,
∴∠DCA=∠CAM=30°,
∵∠BCD=∠BCA-∠DCA,
∴∠BCD=90°-30°=60°,
∴∠2=60°,
∴∠1=∠2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在抗洪搶險中,解放軍戰(zhàn)士的沖鋒舟加滿油沿東西方向的河流搶救災(zāi)民,早晨從地出發(fā),晚上到達地,約定向東為正方向,當天的航行路程記錄如下(單位:千米):,,,,,,,.
(1)請你幫忙確定地位于地的什么方向,距離地多少千米?
(2)若沖鋒舟每千米耗油升,郵箱容量為升,求沖鋒舟當天救災(zāi)過程中至少還需補充多少升油?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家住房的地面結(jié)構(gòu)如圖所示,請根據(jù)圖中的數(shù)據(jù),解答下列問題:
(1)用含x的代數(shù)式表示地面總面積;
(2)已知客廳面積比衛(wèi)生間面積多這家房子的主人打算把廚房和衛(wèi)生間都鋪上地磚,已知鋪地磚的平均費用為60元,求鋪地磚的總費用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“3·15”消費者權(quán)益日的活動中,對甲、乙兩家商場售后服務(wù)的滿意度進行了抽查.如圖反映了被抽查用戶對兩家商場售后服務(wù)的滿意程度(以下稱:用戶滿意度),分為很不滿意、不滿意、較滿意、很滿意四個等級,并依次記為1分、2分、3分、4分.
(1)分別求出甲、乙兩商場的用戶滿意度分數(shù)的平均值(計算結(jié)果精確到0.01).
(2)請你根據(jù)所學(xué)的統(tǒng)計知識,判斷哪家商場的用戶滿意度較高,并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀并回答:
科學(xué)實驗證明,平面鏡反射光線的規(guī)律是:射到平面鏡上的光線和被反射出的光線與平面鏡所夾的角相等.如圖1,一束平行光線與射向一個水平鏡面后被反射,此時,.
①由條件可知:與的大小關(guān)系是____________,理由是____________;與的大小關(guān)系是____________;
②反射光線與的位置關(guān)系是____________,理由是____________;
(2)解決問題:
如圖2,,一束光線射到平面鏡上,被反射到平面鏡上,又被鏡反射,若反射出的光線平行于,且,求和的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,若∠BOD=138°,則它的一個外角∠DCE等于( )
A.69°
B.42°
C.48°
D.38°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分ABC,P是BD上一點,過點P作PM^AD,PN^CD,垂足分別為M、N。
(1)求證:ADB=CDB;
(2)若ADC=90°,求證:四邊形MPND是正方形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中, △ABC如圖(每個小正方形的邊長均為1).
(1)請畫出△ABC沿x軸向右平移4個單位長度,再沿y軸向上平移2個單位長度后的△A′B′C′(其中A′、B′、C′分別是A、B、C的對應(yīng)點,不寫畫法)
(2)直接寫出A′、B′、C′三點的坐標:A′(____,_____); B′(____,_____);C′(____,_____).
(3)求△A′B′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于點H,過點C作CD⊥AC,連接AD,點M為AC上一點,且AM=CD,連接BM交AH于點N,交AD于點E.
(1)若AB=3,AD= ,求△BMC的面積;
(2)點E為AD的中點時,求證:AD= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com