【題目】1)如圖①,在RtABC中,ABACDBC邊上一點(diǎn)(不與點(diǎn)B,C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,試探索線段BCDC,EC之間滿足的等量關(guān)系,并證明你的結(jié)論.

2)如圖②,在RtABCRtADE中,ABACADAE,將ADE繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)D落在BC邊上,試探索線段AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論.

【答案】1BCDC+EC,理由見(jiàn)解析;(2BD2+CD22AD2,理由見(jiàn)解析.

【解析】

1)由題意可知:CDCE,∠DCE90°,由于∠ACB90°,所以∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,所以∠ACD=∠BCE,從而可證明△ACD≌△BCESAS

2)由△ACD≌△BCESAS)可知:∠A=∠CBE45°,BEBF,從而可求出∠BEF的度數(shù).

解:(1BDDC+EC

理由如下:將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,

ADAEDAE90°BAC,

∴∠BADCAE,且ABAC,ADAE,

∴△BAD≌△CAESAS

ECBD,

BCBD+CDCE+CD;

2BD2+CD22AD2,

理由如下:連接CE

由(1)得,BAD≌△CAE

BDCE,ACEB,

∴∠DCE90°

CE2+CD2ED2,

Rt△ADE中,AD2+AE2ED2,

ADAE

BD2+CD22AD2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,存在拋物線以及兩點(diǎn).

(1)求該拋物線的頂點(diǎn)坐標(biāo);

(2)若該拋物線經(jīng)過(guò)點(diǎn),求此拋物線的表達(dá)式;

(3)若該拋物線與線段只有一個(gè)公共點(diǎn),結(jié)合圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,都是等腰直角三角形,,的頂點(diǎn)的斜邊的中點(diǎn)重合,將繞點(diǎn)旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,線段與線段相交于點(diǎn),射線與線段相交于點(diǎn),與射線相交于點(diǎn).

1)求證:;

2)求證:平分;

3)當(dāng),,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用配方法解下列方程,其中應(yīng)在方程左右兩邊同時(shí)加上4的是( 。

A. x22x5 B. x2+4x5 C. 2x24x5 D. 4x2+4x5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B1,0)兩點(diǎn),交y軸于點(diǎn)C0,3),點(diǎn)C,D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過(guò)點(diǎn)B,D,交y軸為E

1)求二次函數(shù)的解析式;

2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖中的小方格都是邊長(zhǎng)為1的正方形,ABC的頂點(diǎn)和O點(diǎn)都在正方形的頂點(diǎn)上.

1)以點(diǎn)O為位似中心,在方格圖中將ABC放大為原來(lái)的2倍,得到A1B1C1;

2)將A1B1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后得到的A2B1C2

3)在(2)的旋轉(zhuǎn)過(guò)程中,點(diǎn)A1的運(yùn)動(dòng)路徑長(zhǎng)為  ,邊A1C1掃過(guò)的區(qū)域面積為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開(kāi)這兩把鎖,其余的鑰匙不能打開(kāi)這兩把鎖.現(xiàn)在任意取出一把鑰匙去開(kāi)任意一把鎖.

1)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法表示出上述試驗(yàn)所有可能結(jié)果;

2)求一次打開(kāi)鎖的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB<AD,D=30°,CD=4,以AB為直徑的⊙OBC于點(diǎn)E,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分10分)科幻小說(shuō)《實(shí)驗(yàn)室的故事》中,有這樣一個(gè)情節(jié),科學(xué)家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過(guò)一天后,測(cè)試出這種植物高度的增長(zhǎng)情況(如下表):

溫度/℃

……

4

2

0

2

4

4.5

……

植物每天高度增長(zhǎng)量/mm

……

41

49

49

41

25

19.75

……

由這些數(shù)據(jù),科學(xué)家推測(cè)出植物每天高度增長(zhǎng)量是溫度的函數(shù),且這種函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.

1)請(qǐng)你選擇一種適當(dāng)?shù)暮瘮?shù),求出它的函數(shù)關(guān)系式,并簡(jiǎn)要說(shuō)明不選擇另外兩種函數(shù)的理由;

2)溫度為多少時(shí),這種植物每天高度的增長(zhǎng)量最大?

3)如果實(shí)驗(yàn)室溫度保持不變,在10天內(nèi)要使該植物高度增長(zhǎng)量的總和超過(guò)250mm,那么實(shí)驗(yàn)室的溫度應(yīng)該在哪個(gè)范圍內(nèi)選擇?請(qǐng)直接寫(xiě)出結(jié)果.

查看答案和解析>>

同步練習(xí)冊(cè)答案