【題目】如圖,已知,.
(1)若添加條件,則嗎?請說明理由;
(2)若運用“”判定與全等,則需添加條件:_________;
(3)若運用“”判定與全等,則需添加條件:___________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠ABC與∠ACB的平分線交于點P.
(1)當∠A=40°,∠ABC=60°時,求∠BPC的度數(shù);
(2)當∠A=α°時,求∠BPC的度數(shù).(用α的代數(shù)式表示)
(3)小明研究時發(fā)現(xiàn):如果延長AB至D,再過點B作BQ⊥BP,那么BQ就是∠CBD的平分線。請你證明小明的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,BC=3,D為AC延長線上一點,AC=3CD,過點D作DH∥AB,交BC的延長線于點H.
(1)求BD·cos∠HBD的值;
(2)若∠CBD=∠A,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(﹣3,0),點 B是 y軸正半軸上一動點,點C、D在 x正半軸上.
(1)如圖,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的兩條角平分線,且BD、CE交于點F,直接寫出CF的長_____.
(2)如圖,△ABD是等邊三角形,以線段BC為邊在第一象限內(nèi)作等邊△BCQ,連接 QD并延長,交 y軸于點 P,當點 C運動到什么位置時,滿足 PD=DC?請求出點C的坐標;
(3)如圖,以AB為邊在AB的下方作等邊△ABP,點B在 y軸上運動時,求OP的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在平面直角坐標系中,已知點A(m,0),B(n,0),且m,n滿足(m+1)2+=0,將線段AB向右平移1個單位長度,再向上平移2個單位長度,得到線段CD,其中點C與點A對應(yīng),點D與點B對應(yīng),連接AC,BD.
(1)求點A、B、C、D的坐標;
(2)在x軸上是否存在點P,使三角形PBC的面積等于平行四邊形ABDC的面積?若存在,求出點P的坐標;若不存在,請說明理由;
(3)如圖(2),點E在y軸的負半軸上,且∠BAE=∠DCB.求證:AE∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是某城市街道示意圖,已知與均是等邊三角形(即三條邊都相等,三個角都相等的三角形),點為公交車?空荆尹c在同一條直線上.
(1)圖中與全等嗎?請說明理由;
(2)連接,寫出與的大小關(guān)系;
(3)公交車甲從出發(fā),按照的順序到達站;公交車乙從出發(fā),按照的順序到達站.若甲,乙兩車分別從兩站同時出發(fā),在各站?康臅r間相同,兩車的平均速度也相同,則哪一輛公交車先到達指定站?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面內(nèi)由極點、極軸和極徑組成的坐標系叫做極坐標系.如圖,在平面上取定一點O稱為極點;從點O出發(fā)引一條射線Ox稱為極軸;線段OP的長度稱為極徑.點P的極坐標就可以用線段OP的長度以及從Ox轉(zhuǎn)動到OP的角度(規(guī)定逆時針方向轉(zhuǎn)動角度為正)來確定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,則點P關(guān)于點O成中心對稱的點Q的極坐標表示不正確的是( )
A. Q(3,240°) B. Q(3,﹣120°) C. Q(3,600°) D. Q(3,﹣500°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖直線的解析式為y=x+1,直線的解析式為;這兩個圖象交于y軸上一點C,直線與x軸的交點B(2,0).
(1)求a、b的值;
(2)動點P從點B出發(fā)沿x軸以每秒1個單位長的速度向左移動,設(shè)移動時間為t秒,當△PAC為等腰三角形時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠MON=40°,OE平分∠MON,A,B,C分別是射線OM,OE,ON上的動點(A,B,C不與點O 重合),連接AC交射線OE于點D.設(shè)∠OAC=x°.
(1)如圖①,若AB∥ON,則
①∠ABO的度數(shù)是________.
②當∠BAD=∠ABD時,x=________;當∠BAD=∠BDA時,x=________.
(2)如圖②,若AB⊥OM,則是否存在這樣的x值,使得△ADB中有兩個相等的角?若存在,求出x的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com