【題目】已知,如圖,∠C=90°,∠B=30°,AD是△ABC的角平分線.
(1)求證:BD=2CD;
(2)若CD=2,求△ABD的面積.
【答案】(1)見解析;(2)6
【解析】
(1)過D作DE⊥AB于E,依據(jù)角平分線的性質(zhì),即可得到DE=CD,再根據(jù)含30°角的直角三角形的性質(zhì),即可得出結(jié)論;
(2)依據(jù)AD=BD=2CD=4,即可得到Rt△ACD中,,再根據(jù)△ABD的面積=進(jìn)行計(jì)算即可.
解:(1)如圖,過D作DE⊥AB于E,
∵∠C=90°,AD是△ABC的角平分線,
∴DE=CD,
又∵∠B=30°,
∴Rt△BDE中,DE=BD,
∴BD=2DE=2CD;
(2)∵∠C=90°,∠B=30°,AD是△ABC的角平分線,
∴∠BAD=∠B=30°,
∴AD=BD=2CD=4,
∴Rt△ACD中,AC=,
∴△ABD的面積為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以的各邊,在邊的同側(cè)分別作三個(gè)正方形.他們分別是正方形,,,試探究:
如圖中四邊形是什么四邊形?并說明理由.
當(dāng)滿足什么條件時(shí),四邊形是矩形?
當(dāng)滿足什么條件時(shí),四邊形是正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的月日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買臺節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號的設(shè)備可供選購.經(jīng)調(diào)查:購買臺甲型設(shè)備比購買臺乙型設(shè)備多花萬元,購買臺甲型設(shè)備比購買臺乙型設(shè)備少花萬元.
(1)求甲、乙兩種型號設(shè)備每臺的價(jià)格;
(2)該公司經(jīng)決定購買甲型設(shè)備不少于臺,預(yù)算購買節(jié)省能源的新設(shè)備資金不超過萬元,你認(rèn)為該公司有哪幾種購買方案;
(3)在(2)的條件下,已知甲型設(shè)備每月的產(chǎn)量為噸,乙型設(shè)備每月的產(chǎn)量為噸.若每月要求產(chǎn)量不低于噸,為了節(jié)約資金,請你為該公司設(shè)計(jì)一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有若千個(gè)整數(shù)點(diǎn),其順序按圖中“”方向排列,如….根據(jù)這個(gè)規(guī)律探索可得,第個(gè)點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有若千個(gè)整數(shù)點(diǎn),其順序按圖中“”方向排列,如….根據(jù)這個(gè)規(guī)律探索可得,第個(gè)點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)七、八年級各選名同學(xué)參加“創(chuàng)全國文明城市”知識競賽,計(jì)分分制,選手得分均為整數(shù),成績達(dá)到分或分以上為合格,達(dá)到分或分以上為優(yōu)秀,這次競賽后,七、八年級兩支代表隊(duì)成績分布的條形統(tǒng)計(jì)圖和成績分析表如下,其中七年級代表隊(duì)得分、分選手人數(shù)分別為,.
隊(duì)列 | 平均分 | 中位數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
七年級 | |||||
八年級 |
(1)根據(jù)圖表中的數(shù)據(jù),求,的值.
(2)直接寫出表中的 , .
(3)你是八年級學(xué)生,請你給出兩條支持八年級隊(duì)成績好的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的面積為24,點(diǎn)D在線段AC上,點(diǎn)F在線段BC的延長線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積為( 。
A.3B.4C.6D.8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com