【題目】如圖,在數(shù)軸上,點A表示數(shù)1,現(xiàn)將點A沿數(shù)軸做如下移動:第一次將點A向左移動3個單位長度到達點,第2次將點向右平移6個單位長度到達點,第3次將點向左移動9個單位長度到達點…,按照這種規(guī)律移動下去,則第2017次移動到點時,在數(shù)軸上對應的實數(shù)是_______.
【答案】-3026
【解析】
根據(jù)點A在數(shù)軸上移動的方向及距離計算出前幾項的結(jié)果,得出n為奇數(shù)時結(jié)果為;n為偶數(shù)時的結(jié)果為,把n=2017代入計算即可得答案.
∵將點A向左移動3個單位長度到達點,A表示數(shù)1,
∴A1表示的數(shù)是1-3=-2,
∵將點向右平移6個單位長度到達點,
∴A2表示的數(shù)是-2+4=6,
同理可得:A3表示的數(shù)為-5,
A4表示的數(shù)是7,
A5表示的數(shù)是-8,
A6表示的數(shù)是10,
……
∴當n為奇數(shù)時,An=,當n為偶數(shù)時,An=
∴A2017==-3026.
故答案為:-3026
科目:初中數(shù)學 來源: 題型:
【題目】如圖的⊙O中,AB為直徑,OC⊥AB,弦CD與OB交于點F,過點D、A分別作⊙O的切線交于點G,并與AB延長線交于點E.
(1)求證:∠1=∠2.
(2)已知:OF:OB=1:3,⊙O的半徑為3,求AG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是甲、乙兩人同一地點出發(fā)后,路程隨時間變化的圖象.
(1)兩個變量中, 是自變量, 是因變量;
(2)甲的速度 乙的速度(填<、=、或>);
(3)路程為150km時,甲行駛了 小時,乙行駛了 小時.
(4)甲比乙先走了 小時;在9時, 走在前面。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與雙曲線y=交于A、B兩點,點B的坐標為(-4,-2),C為第一象限內(nèi)雙曲線y=上一點,且點C在直線的上方.
(1)求雙曲線的函數(shù)解析式;
(2)若△AOC的面積為6,求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=60°,AD=8,F是AB的中點,過點F作FE⊥AD,垂足為E,將△AEF沿點A到點B的方向平移,得到△A′E′F′.
(1)求EF的長;
(2)設P,P′分別是EF,E′F′的中點,當點A′與點B重合時,求證四邊形PP′CD是平行四邊形,并求出四邊形PP′CD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某景區(qū)的三個景點A、B、C在同一線路上.甲、乙兩名游客從景點A出發(fā),甲步行到景點C;乙乘景區(qū)觀光車先到景點B,在B處停留一段時間后,再步行到景點C,甲、乙兩人同時到達景點C.甲、乙兩人距景點A的路程y(米)與甲出發(fā)的時間x(分)之間的函數(shù)圖象如圖所示.
(1)乙步行的速度為_ __米/分.
(2)求乙乘景區(qū)觀光車時y與x之間的函數(shù)關系式.
(3)甲出發(fā)多長時間與乙第一次相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程式應用題.
天河食品公司收購了200噸新鮮柿子,保質(zhì)期15天,該公司有兩種加工技術,一種是加工為普通柿餅,另一種是加工為特級霜降柿餅,也可以不需加工直接銷售.相關信息見表:
品種 | 每天可加工數(shù)量(噸) | 每噸獲利(元) |
新鮮柿子 | 不需加工 | 1000元 |
普通柿餅 | 16噸 | 5000元 |
特級霜降柿餅 | 8噸 | 8000元 |
由于生產(chǎn)條件的限制,兩種加工方式不能同時進行,為此公司研制了兩種可行方案:
方案1:盡可能多地生產(chǎn)為特級霜降柿餅,沒來得及加工的新鮮柿子,在市場上直接銷售;
方案2:先將部分新鮮柿子加工為特級霜降柿餅,再將剩余的新鮮柿子加工為普通柿餅,恰好15天完成.
請問:哪種方案獲利更多?獲利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等腰直角△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.
(1)求證:△ADC≌△CEB;
(2)求證:AD+BE=DE;
(3)當直線MN繞點C旋轉(zhuǎn)到圖2的位置時,試問DE、AD、BE具有怎樣的等量關系?請寫出這個等量關系,并加以說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com