【題目】如圖,一次函數(shù)y=kx+3的圖象與反比例函數(shù)的圖象交于PQ兩點,PAx軸于點A,一次函數(shù)的圖象分別交x軸、y軸于點C、點B,其中OA=6,且.

(1)求一次函數(shù)和反比例函數(shù)的表達式;

(2)APQ的面積;

(3)根據(jù)圖象寫出當x取何值時,一次函數(shù)的值小于反比例函數(shù)的值.

【答案】1y=-x+3,y=-;(2SAPQ=30;(3)當-4<x<0x>6時,一次函數(shù)的值小于反比例函數(shù)的值.

【解析】

1)根據(jù)題意求得C2,0).將C代入y=kx+3中,即可得到一次函數(shù)的表達式.
根據(jù)題意求得P6,-6).將點P6,-6)代入反比例函數(shù)y=,即可得到反比例函數(shù)的表達式.
2)聯(lián)立直線PQ與反比例函數(shù)解析式,得到Q點坐標.再根據(jù)三角形的面積公式即可得到答案.
3)通過觀察圖像即可得到答案.

1)∵OA=6,且,
OA=3OC=6,
OC=2,即C2,0).
C2,0)代入y=kx+3中,
得:0=2k+3,解得:k=-,
∴一次函數(shù)的表達式為y=-x+3
y=-x+3x=6,則y=-6,
P6-6).
∵點P6,-6)在反比例函數(shù)y=的圖象上,
m=6×-6=-36,
∴反比例函數(shù)的表達式為y=-
2)聯(lián)立直線PQ與反比例函數(shù)解析式,
得:,解得:,或,
Q-4,9).
SAPQ=ACyQ-yP=×6-2×[9--6]=30
3)觀察函數(shù)圖象發(fā)現(xiàn):
-4<x<0x>6時,一次函數(shù)圖象在反比例函數(shù)圖象的下方,
∴當-4<x<0x>6時,一次函數(shù)的值小于反比例函數(shù)的值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB4,BC4,點EAB的中點,點FAD邊上的一個動點,將△AEF沿EF所在直線翻折,得到△A'EF,連接A'C,A'D,則當△A'DC是以A'D為腰的等腰三角形時,FD的長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某網(wǎng)店專售一款電動牙刷,其成本為20/支,銷售中發(fā)現(xiàn),該商品每天的銷售量y(支)與銷售單價x(/支)之間存在如圖所示的關系.

(1)yx之間的函數(shù)關系式.

(2)由于湖北省武漢市爆發(fā)了新型冠狀病毒肺炎(簡稱新冠肺炎)疫情,該網(wǎng)店店主決定從每天獲得的利潤中抽出200元捐獻給武漢,為了保證捐款后每天剩余利潤不低于550元,如何確定這款電動牙刷的銷售單價?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下說法正確的是(  )

A.小明做了次擲圖釘?shù)膶嶒,發(fā)現(xiàn)次釘尖朝上,由此他說釘尖朝上的概率是

B.一組對邊平行,另一組對邊相等的四邊形是平行四邊形

C.都在反比例函數(shù)圖象上,且

D.對于一元二元方程,若則方程的兩個根互為相反數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】深圳某百果園店售賣贛南臍橙,已知每千克臍橙的成本價為元,在銷售臍橙的這天時間內,銷售單價(元/千克)與時間第(天)之間的函數(shù)關系式為,且為整數(shù)),日銷售量(千克)與時間第(天)之間的函數(shù)關系式為,且為整數(shù))

1)請你直接寫出日銷售利潤(元)與時間第(天)之間的函數(shù)關系式;

2)該店有多少天日銷售利潤不低于元?

3)在實際銷售中,該店決定每銷售千克臍橙,就捐贈元給希望工程,在這天中,每天扣除捐贈后的日銷售利潤隨時間的增大而增大,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】揭西縣圍繞“推進‘六穩(wěn)’,拉動消費”為主題,舉辦“揭西人游揭西”活動,從4月份到6月份,分批次免費游覽縣內相關旅游景區(qū)景點.某班級全班同學分別從AB、C、D、E五個景區(qū)中選出自己最喜歡的一個,繪制出如下的統(tǒng)計圖①和圖②,請根據(jù)相關信息,解答下列問題:

1)圖①中m的值為.扇形統(tǒng)計圖中,B景區(qū)所對的圓心角的大小是;

2)補全條形統(tǒng)計圖;

3)甲乙兩個同學分別從A、B、C、D四個景區(qū)中隨機挑出一個景區(qū)各自游玩,請用樹狀圖或列表的方法求出他們剛好選到同一個景區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在完善基礎設施、改善市容市貌、提升城市品質過程中,2019年我市開展人行道改造工程,需要花崗巖地板磚鋪設人行道.現(xiàn)租用甲、乙兩種貨車運載地板磚,已知一輛甲車每次運載的重量比一輛乙車多2噸,且甲車運載16噸地板磚和乙車運載12噸地板磚所用的車輛數(shù)相同.

1)甲、乙兩種貨車每次運載地板磚各多少噸?

2)現(xiàn)租用甲車a輛、乙車b輛,剛好運載地板磚100噸,且a3b,共有多少種租車方案?

3)在(2)中已知一輛甲車每次的運費是380元,一輛乙車每次的運費是300元,如何租用甲、乙兩種車可使得總運費最低?求出最低總運費.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A是直線x=1上一個動點,以A為頂點的拋物線y1=a(x1)2+t和拋物線y2=ax2交于點B(A,B不重合,a是常數(shù)),直線AB和拋物線y2=ax2交于點BC,直線x=1和拋物線y2=ax2交于點D(如圖僅供參考)

(1)求點B的坐標(用含有a,t的式子表示);

(2)a0,且點A向上移動時,點B也向上移動,求的范圍;

(3)B,C重合時,求的值;

(4)a0,且△BCD的面積恰好為3a時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個批發(fā)商銷售成本為20/千克的某產(chǎn)品,根據(jù)物價部門規(guī)定:該產(chǎn)品每千克售價不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價x(元/千克)滿足一次函數(shù)關系,對應關系如下表:

售價x(元/千克)


50

60

70

80


銷售量y(千克)


100

90

80

70


1)求yx的函數(shù)關系式;

2)該批發(fā)商若想獲得4000元的利潤,應將售價定為多少元?

3)該產(chǎn)品每千克售價為多少元時,批發(fā)商獲得的利潤w(元)最大?此時的最大利潤為多少元?

查看答案和解析>>

同步練習冊答案