【題目】如圖,已知直線y=-x+3與x軸、y軸分別交于A,B兩點,拋物線y=-x2+bx+c經(jīng)過B點,且與x軸交于C,D兩點(點C在左側(cè)),且C(-3,0).
(1)求拋物線的解析式;
(2)平移直線AB,使得平移后的直線與拋物線分別交于點D,E,與y軸交于點F,連接CE,CF,求△CEF的面積.
【答案】(1)y=-x2-2x+3;(2)4.
【解析】
(1)根據(jù)自變量與函數(shù)值得對應(yīng)關(guān)系,可得A,B點坐標(biāo),根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)求出直線DE的解析式,聯(lián)立方程,求出點E的坐標(biāo),根據(jù)三角形的面積公式進行求解即可.
(1)在y=x+3中,當(dāng)x=0時,y=3,當(dāng)y=0時,x=3,
∴點A(3,0),B(0,3),
∵拋物線經(jīng)過點B,C兩點,得
解得
拋物線的解析式為
(2)在中,當(dāng)y=0時,或1,
∴點D(1,0),
直線的解析時為:y=x+1,
當(dāng)x=0時,y=1,
∴點F (0,1),
聯(lián)立
解得:或
∴點
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為直線x=﹣1,給出以下結(jié)論:①abc<0 ②b2﹣4ac>0 ③4b+c<0 ④若B(﹣,y1)、C(﹣,y2)為函數(shù)圖象上的兩點,則y1>y2⑤當(dāng)﹣3≤x≤1時,y≥0,
其中正確的結(jié)論是(填寫代表正確結(jié)論的序號)__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形OABC如圖放置,O為原點.若點A(﹣1,2),點B的縱坐標(biāo)是,則點C的坐標(biāo)是( 。
A. (4,2) B. (2,4) C. (,3) D. (3,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A(﹣2,1),B(1,n)兩點.
(1)試確定上述反比例函數(shù)和一次函數(shù)的表達式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在四邊形ABCD中,對角線AC、BD相交于點E,且AC⊥BD,作BF⊥CD,垂足為點F,BF與AC交于點C,∠BGE=∠ADE.
(1)如圖1,求證:AD=CD;
(2)如圖2,BH是△ABE的中線,若AE=2DE,DE=EG,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于△ADE面積的2倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=6,點M為對角線AC上的一個動點(不與端點A,C重合),過點M作ME⊥AD,MF⊥DC,垂足分別為E,F(xiàn),則四邊形EMFD面積的最大值為( )
A. 6 B. 12 C. 18 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖①,在△ABC 中,∠BAC=90°,AB=AC,直線 m 經(jīng)過點 A,BD⊥m 于點 D,CE⊥m 于點 E,求證:△ABD≌△CAE.
應(yīng)用:如圖②,在△ABC 中,AB=AC,D、A、E 三點都在直線 m 上,并且有∠BDA=∠AEC=∠BAC,求證:DE=BD+CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向的B處,求此時輪船所在的B處與燈塔P的距離.(參考數(shù)據(jù):≈2.449,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017山東省菏澤市,第20題,7分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象在第一象限交于A、B兩點,B點的坐標(biāo)為(3,2),連接OA、OB,過B作BD⊥y軸,垂足為D,交OA于C,若OC=CA.
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)求△AOB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com