【題目】如圖,拋物線y1=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(4,0)和B(1,0),與y軸交于點(diǎn)C.
(1)求出拋物線的解析式;
(2)求點(diǎn)C的坐標(biāo)及拋物線的頂點(diǎn)坐標(biāo);
(3)設(shè)直線AC的解析式為y2=mx+n,請(qǐng)直接寫出當(dāng)y1<y2時(shí),x的取值范圍.
【答案】(1)拋物線的解析式是y=﹣x2+x﹣2;(2)頂點(diǎn)坐標(biāo)是(,);(3) x<0或x>4.
【解析】
(1)代入A和B點(diǎn)并聯(lián)立方程求解即可;
(2)令x=0求解c點(diǎn)坐標(biāo),再運(yùn)用配方法將一般式化為頂點(diǎn)式即可;
(3)由圖像可知,C點(diǎn)左側(cè)以及A點(diǎn)右側(cè)部分均符合問(wèn)題要求.
(1)根據(jù)題意得:,解得
則拋物線的解析式是y=﹣x2+x﹣2;
(2)在y=x2+x﹣2中令x=0,則y=﹣2,則C的坐標(biāo)是(0,﹣2).
y=﹣x2+x﹣2=﹣(x﹣)2+,則拋物線的頂點(diǎn)坐標(biāo)是(,);
(3) 由圖像可知,C點(diǎn)左側(cè)以及A點(diǎn)右側(cè)部分均符合問(wèn)題要求,故當(dāng)x<0或x>4時(shí)均滿足y1<y2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分8分)如圖是某貨站傳送貨物的平面示意圖. 為了提高傳送過(guò)程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°. 已知原傳送帶AB長(zhǎng)為4米.
(1)求新傳送帶AC的長(zhǎng)度;
(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米的通道,試判斷距離B點(diǎn)4米的貨物MNQP是否需要挪走,并說(shuō)明理由.(說(shuō)明:⑴⑵的計(jì)算結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.24,≈2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,己知點(diǎn)A(8,0),點(diǎn)C(0,6),點(diǎn)B在x軸負(fù)半軸上,且AB=AC.
(1)求點(diǎn)B的坐標(biāo);
(2)如圖2,若點(diǎn)E為邊AC的中點(diǎn),動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度沿線段BA向點(diǎn)A勻速運(yùn)動(dòng),設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒);
①若△OME的面積為2,求t的值;
②如圖3,在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,△OME能否成為直角三角形?若能,求出此時(shí)t的值,并寫出相應(yīng)的點(diǎn)M的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】電動(dòng)自行車已成為市民日常出行的首選工具。據(jù)某市品牌電動(dòng)自行車經(jīng)銷商1至3月份統(tǒng)計(jì),該品牌電動(dòng)自行車1月份銷售150輛,3月銷售216輛.
(1)求該品牌電動(dòng)車銷售量的月平均增長(zhǎng)率;
(2)若該品牌電動(dòng)自行車的進(jìn)價(jià)為2300元,售價(jià)2800元,則該經(jīng)銷商1月至3月共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2﹣2ax+c(a<0)的最大值為4,且拋物線過(guò)點(diǎn)(,﹣),點(diǎn)P(t,0)是x軸上的動(dòng)點(diǎn),拋物線與y軸交點(diǎn)為C,頂點(diǎn)為D.
(1)求該二次函數(shù)的解析式,及頂點(diǎn)D的坐標(biāo);
(2)求|PC﹣PD|的最大值及對(duì)應(yīng)的點(diǎn)P的坐標(biāo);
(3)設(shè)Q(0,2t)是y軸上的動(dòng)點(diǎn),若線段PQ與函數(shù)y=a|x|2﹣2a|x|+c的圖象只有一個(gè)公共點(diǎn),求t的取值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,下列4×4網(wǎng)格圖都是由16個(gè)相同小正方形組成,每個(gè)網(wǎng)格圖中有4個(gè)小正方形已涂上陰影,請(qǐng)?jiān)诳瞻仔≌叫沃,按下列要求涂上陰影?/span>
(1)在圖1中選取2個(gè)空白小正方形涂上陰影,使6個(gè)陰影小正方形組成一個(gè)中心對(duì)稱圖形;
(2)在圖2中選取2個(gè)空白小正方形涂上陰影,使6個(gè)陰影小正方形組成一個(gè)軸對(duì)稱圖形,但不是中心對(duì)稱圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,E是AB延長(zhǎng)線上一點(diǎn),分別以AB、BE為一邊在直線AE同側(cè)作正方形ABCD和正方形BEFG,連接AG、CE.
(1)試探究線段AG與CE的大小關(guān)系,并證明你的結(jié)論;
(2)若AG恰平分∠BAC,且BE=1,試求AB的長(zhǎng);
(3)將正方形BEFG繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)一個(gè)銳角后,如圖②,問(wèn)(1)中結(jié)論是否仍然成立,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】()如圖①,在四邊形中,,,、分別是邊、上的點(diǎn),且.
求證:.
()如圖②,在四邊形中,,,、分別是邊、上的點(diǎn),且,()中的結(jié)論是否仍然成立?
()如圖③,在四邊形中,,,、分別是邊、延長(zhǎng)線上的點(diǎn),且.()中的結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)寫出它們之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了讓“兩會(huì)”精神深入青年學(xué)生,增強(qiáng)學(xué)子們的歷史使命和社會(huì)責(zé)任感,某高校黨委舉辦了“奮力奔跑同心追夢(mèng)”兩會(huì)主題知識(shí)競(jìng)答活動(dòng),文學(xué)社團(tuán)為選派優(yōu)秀同學(xué)參加學(xué)校競(jìng)答活動(dòng),提前對(duì)甲、乙兩位同學(xué)進(jìn)行了6次測(cè)驗(yàn):
①收集數(shù)據(jù):分別記錄甲、乙兩位同學(xué)6次測(cè)驗(yàn)成績(jī)(單位:分)
甲 | 82 | 78 | 82 | 83 | 86 | 93 |
乙 | 83 | 81 | 84 | 86 | 83 | 87 |
②整理數(shù)據(jù):列表格整理兩位同學(xué)的測(cè)驗(yàn)成績(jī)(單位:分)
1 | 2 | 3 | 4 | 5 | 6 | |
甲 | 82 | 78 | 82 | 83 | 86 | 93 |
乙 | 83 | 81 | 84 | 86 | 83 | 87 |
③描述數(shù)據(jù):根據(jù)甲、乙兩位同學(xué)的成績(jī)繪制折線統(tǒng)計(jì)圖
④分析數(shù)據(jù):兩組成績(jī)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:
同學(xué) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 84 | 82.5 | __________ | 16.3 |
乙 | 84 | 83.5 | 83 | __________ |
得出結(jié)論:結(jié)合上述統(tǒng)計(jì)過(guò)程,回答下列問(wèn)題:
(1)補(bǔ)全④中表格;
(2)甲、乙兩名同學(xué)中,_______(填甲或乙)的成績(jī)更穩(wěn)定,理由是______________________
(3)如果由你來(lái)選擇一名同學(xué)參加學(xué)校的競(jìng)答活動(dòng),你會(huì)選擇__________(填甲或乙),理由是___________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com