精英家教網 > 初中數學 > 題目詳情

【題目】 如圖,在中,,以點為圓心,長為半徑的圓交于點,的延長線交⊙于點,連接,是⊙上一點,點與點位于兩側,且,連接

1)求證:;

2)若,求的長及的值.

【答案】1)證明見解析;(2CE=,

【解析】

1)利用等角的余角相等即可得出結論;

2)先判斷出得出比例式求出,,利用勾股定理求出,再判斷出,可求出FM;進而判斷出四邊形是矩形,求出,即可求出,再用勾股定理求出,即可得出結論.

解:(1)∵,

,

是⊙的直徑,

,

,

,

2)∵,

,

,

,,

,,

,

中,,

,

過點,

,,

,

,

,,

過點,

,

,

,

∴四邊形是矩形,

,

中,

中,

故答案為:(1)證明見解析;(2CE=,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數據:cos75°0.2588,sin75°0.9659,tan75°3.732,1.732,1.414)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點邊上,,若添加條件________,則四邊形是矩形;若添加條件________,則四邊形是菱形;若添加條件________,則四邊形是正方形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某藥廠銷售部門根據市場調研結果,對該廠生產的一種新型原料藥未來兩年的銷售進行預測,井建立如下模型:設第t個月該原料藥的月銷售量為P(單位:噸),Pt之間存在如圖所示的函數關系,其圖象是函數P=(0<t≤8)的圖象與線段AB的組合;設第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Qt之間滿足如下關系:Q=

(1)當8<t≤24時,求P關于t的函數解析式;

(2)設第t個月銷售該原料藥的月毛利潤為w(單位:萬元)

①求w關于t的函數解析式;

②該藥廠銷售部門分析認為,336≤w≤513是最有利于該原料藥可持續(xù)生產和銷售的月毛利潤范圍,求此范圍所對應的月銷售量P的最小值和最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】嘉淇正在參加全國數學競賽,只要他再答對最后兩道單選題就能順利過關,其中第一道題有3個選項,第二道題有4個選項,而這兩道題嘉淇都不會,不過嘉淇還有一次求助沒有使用(使用求助可讓主持人去掉其中一題的一個錯誤選項).

1)如果嘉淇第一題不使用求助,隨機選擇一個選項,那么嘉淇答對第一道題的概率是多少?

2)若嘉淇將求助留在第二題使用,請用畫樹狀圖或列表法求嘉淇能順利過關的概率;

3)請你從概率的角度分析,建議嘉洪在第幾題使用求助,才能使他過關的概率較大.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知ABC內接于⊙O,AB是⊙O的直徑,點F在⊙O上,且點C的中點,過點C作⊙O的切線交AB的延長線于點D,交AF的延長線于點E

1)求證:AEDE;

2)若∠BAF=60°,AF=4,求CE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】今年我市為創(chuàng)評全國文明城市稱號,周末團市委組織志愿者進行宣傳活動.班主任崔老師決定從4名女班干部(小悅、小惠、小艷和小倩)中通過抽簽方式確定2名女生去參加.抽簽規(guī)則:將4名女班干部姓名分別寫在4張完全相同的卡片正面,把四張卡片背面朝上,洗勻后放在桌面上,崔老師先從中隨機抽取一張卡片,記下姓名,再從剩余的3張卡片中隨機抽取第二張,記下姓名.[規(guī)定:小悅、小惠、小艷和小倩的姓名分別記作:A、BC、D]

1小悅被抽中 事件(填不可能必然隨機);第一次抽取卡片小悅被抽中的概率為 ;

2)試用畫樹狀圖或列表的方法求出小惠被抽中的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=∠B90°,∠C60°,BCCD8,將四邊形ABCD折疊,使點C與點A重合,折痕為EF,則BE的長為(  )

A. 1B. 2C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=-[x-22+n]x軸交于點Am-20)和B2m+3,0)(點A在點B的左側),與y軸交于點C,連結BC

1)求m、n的值;

2)如圖,點N為拋物線上的一動點,且位于直線BC上方,連接CN、BN.求NBC面積的最大值;

3)如圖,點M、P分別為線段BC和線段OB上的動點,連接PMPC,是否存在這樣的點P,使PCM為等腰三角形,PMB為直角三角形同時成立?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案