【題目】如圖,在ABC中,AB=BC,以AB為直徑的⊙OAC于點(diǎn)D,過(guò)D作直線DE垂直BCF,且交BA的延長(zhǎng)線于點(diǎn)E.

(1)求證:直線DE是⊙O的切線;

(2)若cosBAC=,O的半徑為6,求線段CD的長(zhǎng).

【答案】(1)見(jiàn)解析;(2)4.

【解析】

試題(1)連接OD,OB,根據(jù)AB為直角得到∠ADB=90°,根據(jù)AB=BC,D為中點(diǎn)得到OD為中位線,根據(jù)中位線的性質(zhì)得出∠ODE=90°(2)根據(jù)半徑得到AB=12,根據(jù)Rt△ABD∠BAC的余弦值得出AD,根據(jù)中線的性質(zhì)得出答案.

試題解析:(1)直線DE⊙O相切。

理由:

連接BD、OD∵AB⊙O的直徑,∴∠ADB=90°,即BD⊥AC,

∵BA=BC,∴DAC中點(diǎn),又OAB中點(diǎn),∴OD△ABC的中位線,∴OD∥BC,

∴∠BFE=∠ODE,∵DE⊥BC,∴∠BFE=90°,∴∠ODE=90°∴OD⊥DE,直線DE⊙O的切線;

2∵⊙O的半徑為6,∴AB=12,在Rt△ABD中,cos∠BAC=∴AD=4,由(1)知BD△ABC的中線,

∴CD=AD=4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,點(diǎn)E在AB邊上.

(1)求證:△ACE≌△BCF;

(2)若∠BFE=60°,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)全等的等腰直角三角形按如圖方式放置在平面直角坐標(biāo)系中,OAx軸上,已知∠COD=OAB=90°,OC=,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)B.

(1)求k的值.

(2)把△OCD沿射線OB移動(dòng),當(dāng)點(diǎn)D落在y=圖象上時(shí),求點(diǎn)D經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是由27個(gè)相同的小立方塊搭成的幾何體,它的三個(gè)視圖是3×3的正方形,若拿掉若干個(gè)小立方塊(幾何體不倒掉),其三個(gè)視圖仍都為3×3的正方形,則最多能拿掉小立方塊的個(gè)數(shù)為( 。

A. 10 B. 12 C. 15 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為弘揚(yáng)中華傳統(tǒng)文化,黔南州近期舉辦了中小學(xué)生國(guó)學(xué)經(jīng)典大賽,比賽項(xiàng)目為:A.唐詩(shī);B.宋詞;C.論語(yǔ);D.三字經(jīng).比賽形式為兩人對(duì)抗賽,即把四種比賽項(xiàng)目寫(xiě)在4張完全相同的卡片上,比賽時(shí),比賽的兩人從中隨機(jī)抽取1張卡片作為自己的比賽項(xiàng)目(不放回,且每人只能抽取一次)比賽時(shí),小紅和小明分到一組.(1)小明先抽取,那么小明抽到唐詩(shī)的概率是多少?

2)小紅擅長(zhǎng)唐詩(shī),小紅想:小明先抽取,我后抽取抽到唐詩(shī)的概率是不同的,且小明抽到唐詩(shī)的概率更大,若小紅后抽取,小紅抽中唐詩(shī)的概率是多少?小紅的想法對(duì)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知 ABC中,AB=AC, BAC=90°,直角∠ EPF的頂點(diǎn)PBC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,給出以下四個(gè)結(jié)論:①AE=CF;②△ EPF是等腰直角三角形; 2S四邊形AEPF=S ABC; BE+CF=EF.當(dāng)∠ EPF ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)EAB重合).上述結(jié)論中始終正確的有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1、圖2分別是7×6的網(wǎng)格,網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)均為1,點(diǎn)A、B在小正方形的頂點(diǎn)上.

(1)在圖1中確定點(diǎn)C(點(diǎn)C在小正方形的頂點(diǎn)上),畫(huà)出三角形ABC,使tanB=1,ABC的面積為10;

(2)在圖2中確定點(diǎn)D(點(diǎn)D在小正方形的頂點(diǎn)上),畫(huà)出三角形ABD,使ABD是以AB為斜邊的直角三角形,且AD>BD,直接寫(xiě)出∠DAB的余弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)軸的負(fù)半軸上,點(diǎn)軸的正半軸上,以為斜邊向上作等腰直角,軸于點(diǎn),.

1)如圖1,求點(diǎn)的坐標(biāo);

2)如圖2,動(dòng)點(diǎn)從點(diǎn)出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度沿軸的正半軸運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,連接,設(shè)的面積為,請(qǐng)用含的式子來(lái)表示

3)如圖3,在(2)的條件下,當(dāng)點(diǎn)的延長(zhǎng)線上時(shí),點(diǎn)在直線的下方,且.連接,取的中點(diǎn),連接并延長(zhǎng)交于點(diǎn),連接,當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長(zhǎng)線和∠DCK的角平分線CF的反向延長(zhǎng)線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=( 。

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

同步練習(xí)冊(cè)答案