如圖,12是直線________和________被直線________所截得的同位角.∠23是直線________和________被直線________所截得的________角.

 

答案:
解析:

AF  EF  AB  AB  CD  EF  內(nèi)錯(cuò)

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:022

  如圖,在正方形ABCD的四個(gè)角上截去四個(gè)完全一樣的等腰三角形,將四個(gè)三角形拼成一個(gè)正方形,用所得的八邊形和四邊形________(填“能”或“不能”)進(jìn)行鑲嵌.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:新課程學(xué)習(xí)手冊(cè) 數(shù)學(xué) 七年級(jí)下冊(cè) 配人教版 題型:022

  如圖所示,用8塊相同的長(zhǎng)方形地磚拼成一個(gè)大的長(zhǎng)方形,每塊地磚的長(zhǎng)和寬分別是多少?

  分析:從圖中知,兩個(gè)相等關(guān)系為:①一個(gè)磚長(zhǎng)+一個(gè)磚寬=________,②兩個(gè)磚長(zhǎng)=________

設(shè)磚長(zhǎng)為x cm,寬為y cm,根據(jù)題意,得方程組

解這個(gè)方程組,得

因此,每塊地磚的長(zhǎng)和寬分別為_(kāi)_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:初中數(shù)學(xué) 三點(diǎn)一測(cè)叢書(shū) 八年級(jí)數(shù)學(xué) 下 (江蘇版課標(biāo)本) 江蘇版 題型:013

反比例函數(shù)中系數(shù)k的幾何意義

  反比例函數(shù)y=(k≠0)任取一點(diǎn)M(a,b),過(guò)M作MA⊥x軸,MB⊥y軸,所得矩形OAMB的面積為S=MA·MB=|b|·|a|=|ab|.又因?yàn)閎=,故ab=k,所以S=|k|(如圖(1)).

  這就是說(shuō),過(guò)雙曲線上任意一點(diǎn)作x軸、y軸的垂線,所得的矩形面積為|k|.這就是k的幾何意義,會(huì)給解題帶來(lái)方便.現(xiàn)舉例如下:

  例1:如(2)圖,已知點(diǎn)P1(x1,y1)和P2(x2,y2)都在反比例函數(shù)y=(k<0)的圖像上,試比較矩形P1AOB與矩形P2COD的面積大小.

  解答:=|k|

  =|k|

  故

  例2:如圖(3),在y=(x>0)的圖像上有三點(diǎn)A、B、C,經(jīng)過(guò)三點(diǎn)分別向x軸引垂線,交x軸于A1、B1、C1三點(diǎn),連結(jié)OA、OB、OC,記△OAA1、△OBB1、△OCC1的面積分別為S1、S2、S3,則有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=,

  |k|=

  |k|=

  S1=S2=S3,故選A.

  例3:一個(gè)反比例函數(shù)在第三象限的圖像如圖(4)所示,若A是圖像任意一點(diǎn),AM⊥x軸,垂足為M,O是原點(diǎn),如果△AOM的面積是3,那么這個(gè)反比例函數(shù)的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲線在第三象限

  ∴k>0∴k=6

  ∴所以反比例函數(shù)的解析式為y=

  根據(jù)是述意義,請(qǐng)你解答下題:

  如圖(5),過(guò)反比例函數(shù)y=(x>0)的圖像上任意兩點(diǎn)A、B分別作軸和垂線,垂足分別為C、D,連結(jié)OA、OB,設(shè)AC與OB的交點(diǎn)為E,△AOE與梯形ECDB的面積分別為S1、S2,比較它們的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小關(guān)系不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探索勾股定理時(shí),我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問(wèn)題,這種方法稱(chēng)為面積法。請(qǐng)你運(yùn)用面積法求解下列問(wèn)題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高。

(1)若BD=h,M時(shí)直線BC上的任意一點(diǎn),M到AB、AC的距離分別為

①   若M在線段BC上,請(qǐng)你結(jié)合圖形①證明:= h;          

②   當(dāng)點(diǎn)M在BC的延長(zhǎng)線上時(shí),,h之間的關(guān)系為      (請(qǐng)直接寫(xiě)出結(jié)論,不必證明)                         

(2)如圖②,在平面直角坐標(biāo)系中有兩條直線:y = x + 6 ; :y = -3x+6 若上的一點(diǎn)M到的距離是3,請(qǐng)你利用以上結(jié)論求解點(diǎn)M的坐標(biāo)。

                                 

                                          圖②


查看答案和解析>>

同步練習(xí)冊(cè)答案