探索勾股定理時(shí),我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問題,這種方法稱為面積法。請(qǐng)你運(yùn)用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高。

(1)若BD=h,M時(shí)直線BC上的任意一點(diǎn),M到AB、AC的距離分別為

①   若M在線段BC上,請(qǐng)你結(jié)合圖形①證明:= h;          

②   當(dāng)點(diǎn)M在BC的延長(zhǎng)線上時(shí),,h之間的關(guān)系為      (請(qǐng)直接寫出結(jié)論,不必證明)                         

(2)如圖②,在平面直角坐標(biāo)系中有兩條直線:y = x + 6 ; :y = -3x+6 若上的一點(diǎn)M到的距離是3,請(qǐng)你利用以上結(jié)論求解點(diǎn)M的坐標(biāo)。

                                 

                                          圖②


(1)證明:連結(jié)AM

①∵, EM⊥AB , MF⊥AC, BD⊥AC

AC.h = AB. + AC.

又∵AB = AC

∴h =  +  

-  = h

(2)由題意可知,DE = DF =10,

∴△EDF是等腰三角形。

當(dāng)點(diǎn)M在線段EF上時(shí),依據(jù)(1)中結(jié)論,

∵h(yuǎn) = EO=6,∴M到DF(即x軸)的距離也為3.

∴點(diǎn)M的縱坐標(biāo)為3,此時(shí)可求得M(1,3)

當(dāng)點(diǎn)M在射線FE上時(shí),依據(jù)(1)中結(jié)論

∵h(yuǎn) = EO=6,∴M到DF(即x軸)的距離也為9.

∴點(diǎn)M的縱坐標(biāo)為9,此時(shí)可求得M(-1,9)

故點(diǎn)M的坐標(biāo)為(1,3)或(-1,9)

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

探索勾股定理時(shí),我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問題,這種方法稱為面積法.請(qǐng)你運(yùn)用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高.
(1)若BD=h,M是直線BC上的任意一點(diǎn),M到AB、AC的距離分別為h1,h2
A、若M在線段BC上,請(qǐng)你結(jié)合圖形①證明:h1+h2=h;
B、當(dāng)點(diǎn)M在BC的延長(zhǎng)線上時(shí),h1,h2,h之間的關(guān)系為
 
.(請(qǐng)直接寫出結(jié)論,不必證明)
(2)如圖②,在平面直角坐標(biāo)系中有兩條直線l1:y=
34
x+6;l2:y=-3x+6.若l2上的一點(diǎn)M到l1的距離是3,請(qǐng)你利用以上結(jié)論求解點(diǎn)M的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探究學(xué)習(xí):探索勾股定理時(shí),我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問題,這種方法稱為面積法.請(qǐng)你運(yùn)用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高(如圖1).
(1)若等腰△ABC的面積為24 cm2,腰的長(zhǎng)為8 cm,則腰AC上的高BD的長(zhǎng)為
 
cm;
(2)若BD=h,M是直線BC上的任意一點(diǎn),M到AB、AC的距離分別為h1、h2
①若M在線段BC上,請(qǐng)你結(jié)合圖2證明:h1+h2=h;
②當(dāng)點(diǎn)M在BC延長(zhǎng)線上時(shí),h1、h2、h之間的關(guān)系為
 
.(直接寫出結(jié)論,不必證明)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

探究學(xué)習(xí):探索勾股定理時(shí),我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問題,這種方法稱為面積法.請(qǐng)你運(yùn)用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高(如圖1).
(1)若等腰△ABC的面積為24 cm2,腰的長(zhǎng)為8 cm,則腰AC上的高BD的長(zhǎng)為______cm;
(2)若BD=h,M是直線BC上的任意一點(diǎn),M到AB、AC的距離分別為h1、h2
①若M在線段BC上,請(qǐng)你結(jié)合圖2證明:h1+h2=h;
②當(dāng)點(diǎn)M在BC延長(zhǎng)線上時(shí),h1、h2、h之間的關(guān)系為______.(直接寫出結(jié)論,不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

探索勾股定理時(shí),我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問題,這種方法稱為面積法.請(qǐng)你運(yùn)用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高.
(1)若BD=h,M是直線BC上的任意一點(diǎn),M到AB、AC的距離分別為h1,h2
A、若M在線段BC上,請(qǐng)你結(jié)合圖形①證明:h1+h2=h;
B、當(dāng)點(diǎn)M在BC的延長(zhǎng)線上時(shí),h1,h2,h之間的關(guān)系為______.(請(qǐng)直接寫出結(jié)論,不必證明)
(2)如圖②,在平面直角坐標(biāo)系中有兩條直線l1:y=數(shù)學(xué)公式x+6;l2:y=-3x+6.若l2上的一點(diǎn)M到l1的距離是3,請(qǐng)你利用以上結(jié)論求解點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年河南省中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題

探索勾股定理時(shí),我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問題,這種方法稱為面積法.請(qǐng)你運(yùn)用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高.
(1)若BD=h,M是直線BC上的任意一點(diǎn),M到AB、AC的距離分別為h1,h2
A、若M在線段BC上,請(qǐng)你結(jié)合圖形①證明:h1+h2=h;
B、當(dāng)點(diǎn)M在BC的延長(zhǎng)線上時(shí),h1,h2,h之間的關(guān)系為______.(請(qǐng)直接寫出結(jié)論,不必證明)
(2)如圖②,在平面直角坐標(biāo)系中有兩條直線l1:y=x+6;l2:y=-3x+6.若l2上的一點(diǎn)M到l1的距離是3,請(qǐng)你利用以上結(jié)論求解點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案