如圖,拋物線y=ax2+bx+c與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸I為x=﹣1.
(1)求拋物線的解析式并寫出其頂點坐標;
(2)若動點P在第二象限內(nèi)的拋物線上,動點N在對稱軸I上.
①當PA⊥NA,且PA=NA時,求此時點P的坐標;
②當四邊形PABC的面積最大時,求四邊形PABC面積的最大值及此時點P的坐標.
解:(1)∵拋物線y=ax2+bx+c與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸I為x=﹣1,
∴,
解得:.
∴二次函數(shù)的解析式為y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴頂點坐標為(﹣1,4);
(2)令y=﹣x2﹣2x+3=0,解得x=﹣3或x=1,
∴點A(﹣3,0),B(1,0),
作PD⊥x軸于點D,
∵點P在y=﹣x2﹣2x+3上,
∴設點P(x,﹣x2﹣2x+3)
①∵PA⊥NA,且PA=NA,
∴△PAD≌△AND,
∴OA=PD
即y=﹣x2﹣2x+3=2,
解得x=﹣1(舍去)或x=﹣﹣1,
∴點P(﹣﹣1,2);
②∵S四邊形BCPA=S△OBC+S△OAC=2+S△APC
∵S△AOC=,S△OCP=x,S△OAP=•3•|yP|=﹣x2﹣3x+
∴S△APC=S△OAP+S△OCP﹣S△AOC=x+(﹣x2﹣3x+)﹣=﹣x2﹣x=﹣(x﹣)2+,
∴當x=﹣時,S△ACP最大值=,
此時M(﹣,﹣),
S四邊形PABC最大=.
點評: 本題考查了二次函數(shù)綜合題.用待定系數(shù)法求函數(shù)的解析式時要靈活地根據(jù)已知條件選擇配方法和公式法.求拋物線的最值的方法是配方法.
科目:初中數(shù)學 來源: 題型:
課前預習是學習的重要環(huán)節(jié),為了了解所教班級學生完成課前預習的具體情況,某班主任對本班部分學生進行了為期半個月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類:A﹣優(yōu)秀,B﹣良好,C﹣一般,D﹣較差,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖,解答下列問題:
(1)本次一共調(diào)查了多少名學生?
(2)C類女生有 名,D類男生有 名,并將條形統(tǒng)計圖補充完整;
(3)若從被調(diào)查的A類和C類學生中各隨機選取一位同學進行“一幫一”互助學習,請用列表法或畫樹狀圖的方法求出所選同學中恰好是一位男同學和一位女同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,已知△ABC三個頂點坐標分別是A(1,3),B(4,1),C(4,4).
(1)請按要求畫圖:
①畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
②畫出△ABC繞著原點O順時針旋轉(zhuǎn)90°后得到的△A2B2C2.
(2)請寫出直線B1C1與直線B2C2的交點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
下列調(diào)查中,適宜采用普查方式的是( 。
| A | 了解一批圓珠筆的壽命 |
| B | 了解全國九年級學生身高的現(xiàn)狀 |
| C | 考察人們保護海洋的意識 |
| D | 檢查一枚用于發(fā)射衛(wèi)星的運載火箭的各零部件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com