【題目】定義{a,b,c}為函數(shù)y=ax2+bx+c的“特征數(shù)”.
(1)“特征數(shù)”為{﹣1,2,3}的函數(shù)解析式為 , 將“特征數(shù)”為{0,1,1}的函數(shù)向下平移兩個(gè)單位以后得到的函數(shù)解析式為;
(2)我們把橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為“整點(diǎn)”,試問(wèn):在上述兩空填寫(xiě)的函數(shù)圖象圍成的封閉圖形(包含邊界)內(nèi)共有多少個(gè)整點(diǎn)?請(qǐng)給出詳細(xì)的運(yùn)算過(guò)程;
(3)定義“特征數(shù)”的運(yùn)算:①{a1 , b1 , c1}+{a2 , b2 , c2}={a1+a2 , b1+b2 , c1+c2};②λ{(lán)a1 , b1 , c1}={λa1 , λb1 , λc1}(其中λ為任意常數(shù)).試問(wèn):“特征數(shù)”為{﹣1,2,3}+λ{(lán)0,1,﹣1}的函數(shù)是否過(guò)定點(diǎn)?如果過(guò)定點(diǎn),請(qǐng)計(jì)算出該定點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明你的理由.
【答案】
(1)y=﹣x2+2x+3;y=x﹣1
(2)
解:
聯(lián)立直線與二次函數(shù)方程
解得: ,
估算﹣2<xA<﹣1,2<xB<3,
橫坐標(biāo)為﹣1的整點(diǎn)有:
(﹣1,0),(﹣1,﹣1),(﹣1,﹣2)三個(gè);
橫坐標(biāo)為0的整點(diǎn)有:
(0,3),(0,2)(0,1),(0,0),(0,﹣1)五個(gè);
橫坐標(biāo)為1的整點(diǎn)有:
(1,4),(1,3),(1,2),(1,1),(1,0)五個(gè);
橫坐標(biāo)為2的整點(diǎn)有:
(2,3)(2,2)(2,1)三個(gè);
合計(jì),共16個(gè)整點(diǎn)
(3)
解:依據(jù)定義,{﹣1,2,3}+λ{(lán)0,1,﹣1}={﹣1,2+λ,3﹣λ},
∴該函數(shù)解析式為:y=﹣x2+(2+λ)x+3﹣λ=(﹣x2+2x+3)+λ(x﹣1),
令x﹣1=0,即x=1,解得:y=4,
∴該函數(shù)始終過(guò)定點(diǎn)(1,4).
【解析】解:(1)①根據(jù)定義,“特征數(shù)”為{﹣1,2,3},則可知a=﹣1,b=2,c=3,
則函數(shù)解析式為:y=﹣x2+2x+3,
②“特征數(shù)”為{0,1,1},則可知a=0,b=1,c=1,
∴y=x+1,
∴向下平移兩個(gè)單位后得到的函數(shù)解析式為:y=x﹣1,
所以答案是:y=﹣x2+2x+3,y=x﹣1;
【考點(diǎn)精析】關(guān)于本題考查的二次函數(shù)的性質(zhì),需要了解增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減。粚(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的一元二次方程 x2+ x+tana=0有兩個(gè)相等的實(shí)數(shù)根,則銳角a等于( )
A.15°
B.30°
C.45°
D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC內(nèi)依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.則EF等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,點(diǎn)O是△ABC的內(nèi)心,連接OB、OC,過(guò)點(diǎn)O作EF∥BC分別交AB、AC于點(diǎn)E、F,已知BC=a (a是常數(shù)),設(shè)△ABC的周長(zhǎng)為y,△AEF的周長(zhǎng)為x,在下列圖象中,大致表示y與x之間的函數(shù)關(guān)系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中考前各校初三學(xué)生都要進(jìn)行體育測(cè)試,某次中考體育測(cè)試設(shè)有A、B兩處考點(diǎn),甲、乙、丙三名學(xué)生各自隨機(jī)選擇其中的一處進(jìn)行中考體育測(cè)試,請(qǐng)用表格或樹(shù)狀圖分析:
(1)求甲、乙、丙三名學(xué)生在同一處進(jìn)行體育測(cè)試的概率;
(2)求甲、乙、丙三名學(xué)生中至少有兩人在B處進(jìn)行體育測(cè)試的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l:y1=2x+4,與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,反比例函數(shù)y2= 與直線l交于點(diǎn)C,且AB=2AC.
(1)求反比例函數(shù)的解析式;
(2)根據(jù)函數(shù)圖象,直接寫(xiě)出0<y1<y2的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將邊長(zhǎng)為2的正方形OABC如圖放置,O為原點(diǎn).若∠α=15°,則點(diǎn)B的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4cm,動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)A出發(fā),以1cm/s的速度分別沿A→B→C和A→D→C的路徑向點(diǎn)C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x(單位:s),四邊形PBDQ的面積為y(單位:cm2),則y與x(0≤x≤8)之間函數(shù)關(guān)系可以用圖象表示為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)P在直線y=x上運(yùn)動(dòng),當(dāng)以點(diǎn)P為圓心,PA的長(zhǎng)為半徑的圓的面積最小時(shí),點(diǎn)P的坐標(biāo)為( )
A.(1,﹣1)
B.(0,0)
C.(1,1)
D.( , )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com