【題目】如圖,矩形紙片中,,,將沿折疊,使點(diǎn)落在點(diǎn)處,交于點(diǎn),則的長等于( )
A. B. C. D.
【答案】B
【解析】
由折疊的性質(zhì)得到AE=AB,∠E=∠B=90°,易證Rt△AEF≌Rt△CDF,即可得到結(jié)論EF=DF;易得FC=FA,設(shè)FA=x,則FC=x,F(xiàn)D=6-x,在Rt△CDF中利用勾股定理得到關(guān)于x的方程x2=42+(6-x)2,解方程求出x即可.
∵矩形ABCD沿對角線AC對折,使△ABC落在△ACE的位置,
∴AE=AB,∠E=∠B=90°,
又∵四邊形ABCD為矩形,
∴AB=CD,
∴AE=DC,
而∠AFE=∠DFC,
∵在△AEF與△CDF中,
,
∴△AEF≌△CDF(AAS),
∴EF=DF;
∵四邊形ABCD為矩形,
∴AD=BC=6,CD=AB=4,
∵Rt△AEF≌Rt△CDF,
∴FC=FA,
設(shè)FA=x,則FC=x,F(xiàn)D=6-x,
在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,
則FD=6-x=.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對多項(xiàng)式(x2﹣4x+2)(x2﹣4x+6)+4進(jìn)行因式分解的過程
解:設(shè)x2﹣4x=y,
原式=(y+2)(y+6)+4。ǖ谝徊剑
=y2+8y+16。ǖ诙剑
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的 (填序號).
A.提取公因式 B.平方差公式
C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)該同學(xué)在第四步將y用所設(shè)中的x的代數(shù)式代換,得到因式分解的最后結(jié)果.這個結(jié)果是否分解到最后? .(填“是”或“否”)如果否,直接寫出最后的結(jié)果 .
(3)請你模仿以上方法嘗試對多項(xiàng)式(x2﹣2x)(x2﹣2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠C是直角,點(diǎn)A在直線MN上,過點(diǎn)C作CE⊥MN于點(diǎn)E,過點(diǎn)B作BF⊥MN于點(diǎn)F.
(1)如圖1,當(dāng)C,B兩點(diǎn)均在直線MN的上方時,
①直接寫出線段AE,BF與CE的數(shù)量關(guān)系.
②猜測線段AF,BF與CE的數(shù)量關(guān)系,不必寫出證明過程.
(2)將等腰直角△ABC繞著點(diǎn)A順時針旋轉(zhuǎn)至圖2位置時,線段AF,BF與CE又有怎樣的數(shù)量關(guān)系,請寫出你的猜想,并寫出證明過程.
(3)將等腰直角△ABC繞著點(diǎn)A繼續(xù)旋轉(zhuǎn)至圖3位置時,BF與AC交于點(diǎn)G,若AF=3,BF=7,直接寫出FG的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=(k≠0)的圖象與一次函數(shù)y=ax+b(a≠0)的圖象交于A、B兩點(diǎn),過點(diǎn)A作AH⊥y軸,垂足為H,若OH=4,sin∠AOH=,點(diǎn)B的坐標(biāo)(6,n).
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①、②、③,正三角形、正方形、正五邊形分別是的內(nèi)接三角形、內(nèi)接四邊形、內(nèi)接五邊形,點(diǎn)、分別從點(diǎn)、開始,以相同的速度中上逆時針運(yùn)動.如圖①、②、③,正三角形、正方形、正五邊形分別是的內(nèi)接三角形、內(nèi)接四邊形、內(nèi)接五邊形,點(diǎn)、分別從點(diǎn)、開始,以相同的速度中上逆時針運(yùn)動.
(1)求圖①中的度數(shù);
(2)圖②中,的度數(shù)是________,圖③中的度數(shù)是________;
(3)根據(jù)前面探索,你能否將本題推廣到一般的正邊形情況?若能,寫出推廣問題和結(jié)論;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,AB=13,BC=12,點(diǎn)D,E分別是AB,BC的中點(diǎn),連接DE,CD,如果DE=2.5,那么△ACD的周長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形OABC放在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,B(8,6),點(diǎn)D是射線AO上的一點(diǎn),把△BAD沿直線BD折疊,點(diǎn)A的對應(yīng)點(diǎn)為A′.
(Ⅰ)若點(diǎn)A′落在矩形的對角線OB上時,OA′的長= ;
(Ⅱ)若點(diǎn)A′落在邊AB的垂直平分線上時,求點(diǎn)D的坐標(biāo);
(Ⅲ)若點(diǎn)A′落在邊AO的垂直平分線上時,求點(diǎn)D的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從外一點(diǎn)引圓的兩條切線、,切點(diǎn)為、,點(diǎn)是劣弧上一點(diǎn),過的切線交、分別于、,若的半徑為,,則的周長為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com