【題目】已知關(guān)于x的方程(x﹣3)(x﹣2)﹣p2=0.
(1)求證:無論p取何值時,方程總有兩個不相等的實數(shù)根;
(2)設(shè)方程兩實數(shù)根分別為x1,x2,且滿足,求實數(shù)p的值.
【答案】(1)詳見解析;(2)根與系的關(guān)系
【解析】
試題分析:(1)先把方程化成一般形式,在計算根的判別式,判定△>0,方即可得程總有兩個不相等的實數(shù)根;(2)根據(jù)一元二次方程根與系的關(guān)系可得兩根和與兩根積,再把變形,化成和與乘積的形式,代入計算,得到一個關(guān)于p的一元二次方程,解方程即可求解.
試題解析:證明:(1)(x﹣3)(x﹣2)﹣p2=0,
x2﹣5x+6﹣p2=0,
△=(﹣5)2﹣4×1×(6﹣p2)=25﹣24+4p2=1+4p2,
∵無論p取何值時,總有4p2≥0,
∴1+4p2>0,
∴無論p取何值時,方程總有兩個不相等的實數(shù)根;
(2)x1+x2=5,x1x2=6﹣p2,
∵,
∴(x1+x2)2﹣2x1x2=3x1x2,
∴52=5(6﹣p2),
∴p=±1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中 ①9的算術(shù)平方根是3 ②﹣8的立方根為2 ③平方根等于它本身的數(shù)有0和1 ④﹣8沒有平方根 正確的有( 。
A. 一個 B. 兩個 C. 三個 D. 四個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程(k-1)x2+2kx+2=0
(1)求證:無論k為何值,方程總有實數(shù)根。
(2)設(shè)x1,x2是方程(k-1)x2+2kx+2=0的兩個根,記S=++ x1+x2,S的值能為2嗎?若能,求出此時k的值。若不能,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某初中學(xué)校欲向高一級學(xué)校推薦一名學(xué)生,根據(jù)規(guī)定的推薦程序:首先由本年級200名學(xué)生民主投票,每人只能推薦一人(不設(shè)棄權(quán)票),選出了票數(shù)最多的甲、乙、丙三人.投票結(jié)果統(tǒng)計如圖一:
圖一
其次,對三名候選人進(jìn)行了筆試和面試兩項測試.各項成績?nèi)缦卤硭荆?/span>
圖二是某同學(xué)根據(jù)上表繪制的一個不完全的條形圖.
圖二
請你根據(jù)以上信息解答下列問題:
(1)補(bǔ)全圖一和圖二;
(2)請計算每名候選人的得票數(shù);
(3)若每名候選人得一票記1分,投票、筆試、面試三項得分按照2:5:3的比確定,計算三名候選人的平均成績,成績高的將被錄取,應(yīng)該錄取誰?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于任意兩點P1(x1 , y1)與P2(x2 , y2)的“友好距離”,給出如下定義: 若|x1﹣x2|≥|y1﹣y2|,則點P1(x1 , y1)與點P2(x2 , y2)的“友好距離”為|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,則P1(x1 , y1)與點P2(x2 , y2)的“友好距離”為|y1﹣y2|;
(1)已知點A(﹣ ,0),B為y軸上的動點, ①若點A與B的“友好距離為”3,寫出滿足條件的B點的坐標(biāo): .
②直接寫出點A與點B的“友好距離”的最小值 .
(2)已知C點坐標(biāo)為C(m, m+3)(m<0),D(0,1),求點C與D的“友好距離”的最小值及相應(yīng)的C點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)從2011年開始,組織全民健身活動,結(jié)合社區(qū)條件,開展了廣場舞、太極拳、羽毛球和跑步四個活動項目,現(xiàn)將參加項目活動總?cè)藬?shù)進(jìn)行統(tǒng)計,并繪制成每年參加總?cè)藬?shù)折線統(tǒng)計圖和2015年各活動項目參與人數(shù)的扇形統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列題
(1)2015年比2011年增加 人;
(2)請根據(jù)扇形統(tǒng)計圖求出2015年參與跑步項目的人數(shù);
(3)組織者預(yù)計2016年參與人員人數(shù)將比2015年的人數(shù)增加15%,名各活動項目參與人數(shù)的百分比與2016年相同,請根據(jù)以上統(tǒng)計結(jié)果,估計2016年參加太極拳的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com