【題目】如圖,在菱形ABCD中,AB=6,DAB=60°AE分別交BC、BD于點(diǎn)E、F,CE=2,連接CF,以下結(jié)論:①△ABF≌△CBF②點(diǎn)EAB的距離是2;tanDCF= ;④△ABF的面積為.其中一定成立的有幾個(gè)( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】C

【解析】∵四邊形ABCD是菱形,

AB=BC=6,

∵∠DAB=60°,

AB=AD=DB,ABD=DBC=60°,

在△ABF與△CBF中,

,

∴△ABF≌△CBF(SAS),

∴①正確;

過(guò)點(diǎn)EEGAB,過(guò)點(diǎn)FMHCD,MHAB,如圖:

CE=2,BC=6,ABC=120°,

BE=6﹣2=4,

EGAB,

EG=2,

∴點(diǎn)EAB的距離是2,

故②正確;

BE=4,EC=2,

SBFE:SFEC=4:2=2:1,

SABF:SFBE=3:2,

∴△ABF的面積為=SABE=××6×2=

故④錯(cuò)誤;

SADB=×6×3=9,

SDFC=SADBSABF=9=,

SDFC=×6×FM=,

FM=,

DM===,

CM=DCDM=6=,

tanDCF==,

故③正確;

故其中一定成立的有3個(gè).

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,∠BAC=120°,點(diǎn) D BC 上一點(diǎn),BD 的垂直平分線交 AB 于點(diǎn)E,將△ACD 沿 AD 折疊,點(diǎn) C 恰好與點(diǎn) E 重合,則∠B 等于_______°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD是∠BAC的平分線,AD的垂直平分線交BC的延長(zhǎng)線于點(diǎn)F

(1)求證:∠FAD=FDA

(2)若∠B=50°,求∠CAF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的推理過(guò)程,在括號(hào)內(nèi)填上推理的依據(jù),如圖:

∵∠1+2=180°,∠2+4=180°(已知)

∴∠1=4( )

ca( )

又∵∠2+3=180°(已知 )

3=6( )

∴∠2+6=180°( )

ab( )

cb( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題再現(xiàn):

數(shù)形結(jié)合是解決數(shù)學(xué)問(wèn)題的一種重要的思想方法,借助這種方法可將抽象的數(shù)學(xué)知識(shí)變得直觀起來(lái)并且具有可操作性,從而可以幫助我們快速解題.初中數(shù)學(xué)里的一些代數(shù)公式,很多都可以通過(guò)表示幾何圖形面積的方法進(jìn)行直觀推導(dǎo)和解釋.

例如:利用圖形的幾何意義證明完全平方公式.

證明:將一個(gè)邊長(zhǎng)為a的正方形的邊長(zhǎng)增加b,形成兩個(gè)矩形和兩個(gè)正方形,如圖1

這個(gè)圖形的面積可以表示成:

a+b2或 a2+2ab+b2

∴(a+b2 a2+2ab+b2

這就驗(yàn)證了兩數(shù)和的完全平方公式.

類(lèi)比解決:

1)請(qǐng)你類(lèi)比上述方法,利用圖形的幾何意義證明平方差公式.(要求畫(huà)出圖形并寫(xiě)出推理過(guò)程)

問(wèn)題提出:如何利用圖形幾何意義的方法證明:13+2332?

如圖2,A表示1個(gè)1×1的正方形,即:1×1×113

B表示1個(gè)2×2的正方形,CD恰好可以拼成1個(gè)2×2的正方形,因此:B、C、D就可以表示2個(gè)2×2的正方形,即:2×2×223A、B、CD恰好可以拼成一個(gè)(1+2)×(1+2)的大正方形.

由此可得:13+23=(1+2232

嘗試解決:

2)請(qǐng)你類(lèi)比上述推導(dǎo)過(guò)程,利用圖形的幾何意義確定:13+23+33   .(要求寫(xiě)出結(jié)論并構(gòu)造圖形寫(xiě)出推證過(guò)程).

3)問(wèn)題拓廣:

請(qǐng)用上面的表示幾何圖形面積的方法探究:13+23+33++n3   .(直接寫(xiě)出結(jié)論即可,不必寫(xiě)出解題過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將一個(gè)邊長(zhǎng)為a厘米的正方形紙片剪去兩個(gè)小矩形,得到圖案,如圖2所示,再將剪下的兩個(gè)小矩形拼成一個(gè)新的矩形,如圖3所示:

(1)列式表示新矩形的周長(zhǎng)為______厘米(化到最簡(jiǎn)形式)

(2)如果正方形紙片的邊長(zhǎng)為8厘米,剪去的小矩形的寬為1厘米,那么所得圖形的周長(zhǎng)為______厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D、B、C三點(diǎn)在同一條直線上,∠C=50°,∠FBC=80°.問(wèn):∠DBF的平分線BEAC有怎樣的位置關(guān)系?并說(shuō)明理由.

解:BEAC一定平行.

∵DB、C三點(diǎn)在同一條直線上,

∴∠DBF+∠FBC=180° ).

∵∠FBC=80°(已知).

∴∠DBF=

∵BE平分∠DBF(已知).

).

∵∠C=50°(已知),

∴∠ =∠ ),

.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的位置如圖所示,現(xiàn)將ABC平移后得△DEF,使點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E

(1)畫(huà)出△DEF;

(2)連接AD、BE,則線段ADBE的關(guān)系是 ;

(3)求△DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,DOAB于點(diǎn)O,連接DA交⊙O于點(diǎn)C,過(guò)點(diǎn)C作⊙O的切線交DO于點(diǎn)E,連接BCDO于點(diǎn)F.

(1)求證:CE=EF;

(2)連接AF并延長(zhǎng),交⊙O于點(diǎn)G.填空:

①當(dāng)∠D的度數(shù)為   時(shí),四邊形ECFG為菱形;

②當(dāng)∠D的度數(shù)為   時(shí),四邊形ECOG為正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案