如圖△ABC中,∠BAC=90°,P是△ABC內(nèi)一點(diǎn),將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一定角度后能與△ACQ重合,如果AP=3,那么△APQ的面積是多少?
分析:首先根據(jù)旋轉(zhuǎn)的性質(zhì),證明△PAQ是等腰直角三角形,再根據(jù)三角形的面積公式即可求解.
解答:解:∵將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一定角度后與△ACQ重合,
∴△ABP≌△ACQ,
∴AP=AQ=3,AB=AC.
∵∠BAC=90°,
∴∠PAQ=90°,
∴△PAQ是等腰直角三角形,
S△APQ=
AP•AQ
2
=
3×3
2
=
9
2
點(diǎn)評(píng):本題主要考查了旋轉(zhuǎn)的性質(zhì)及三角形的面積公式,其中證明△PAP′是等腰直角三角形是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖△ABC中,AB=3,AC=2,BO平分∠ABC,CO平分∠ACB.DE過(guò)點(diǎn)O交AB于D,交AC于E,且DE∥BC.則△ADE周長(zhǎng)為
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖△ABC中,∠C=90°,AC=6,AB=10,D是BC邊的中點(diǎn),以AD上一點(diǎn)O為圓心的圓與AB,BC都相切,則⊙O的半徑為(  )
A、
12
7
B、
1
5
C、
5
3
D、2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南崗區(qū)一模)如圖△ABC中,DE∥BC,CD、BE交于點(diǎn)F,若DF=1,CF=3,AD=2,則線(xiàn)段BD的長(zhǎng)等于
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖△ABC中,∠A=78°,AB=AC,P為△ABC內(nèi)一點(diǎn),連BP,CP,使∠PBC=9°,∠PCB=30°,連PA,則∠BAP的度數(shù)為
69°
69°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖△ABC中,∠ABC=20°,外角∠ABF的平分線(xiàn)與CA邊的延長(zhǎng)線(xiàn)交于點(diǎn)D,外角∠EAC的平分線(xiàn)交BC邊的延長(zhǎng)線(xiàn)于點(diǎn)H,若∠BDA=∠DAB,則∠AHC=(  )度.

查看答案和解析>>

同步練習(xí)冊(cè)答案