【題目】某報社為了解市民對社會主義核心價值觀的知曉程度,采取隨機抽樣的方式進行問卷調(diào)查,調(diào)查結果為“A.非常了解、“B.了解、“C.基本了解三個等級,并根據(jù)調(diào)查結果制作了如下兩幅不完整的統(tǒng)計圖.

1)這次調(diào)查的市民人數(shù)為_____人,m=______,n=_______;

2)補全條形統(tǒng)計圖;

3)若該市約有市民1200000人,請你根據(jù)抽樣調(diào)查的結果,估計該市對社會主義核心價值觀達到“A.非常了解程度的人數(shù).

【答案】(1)500,12,32;(2)見解析;(3)384000人.

【解析】

1)根據(jù)項目B的人數(shù)以及百分比,即可得到這次調(diào)查的市民人數(shù),據(jù)此可得項目A,C的百分比;
2)根據(jù)對社會主義核心價值觀達到“A.非常了解的人數(shù)為:,補全條形統(tǒng)計圖;
3)根據(jù)全市總人數(shù)乘以A項目所占百分比,即可得到該市對社會主義核心價值觀達到“A非常了解的程度的人數(shù).

解:(1)這次調(diào)查的市民人數(shù)為:(人).

,

.

.

2“A非常了解的人數(shù)為:(人). 補全條形統(tǒng)計圖如圖所示,

3(人),該市大約有384000人對社會主義核心價值觀達到“A非常了解的程度.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的對角線相交于點,的角平分線分別交、、兩點,若,則線段的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中A,B的坐標分別為A(a,0),B(b,0),a,

b滿足 |a+2|+=0,C的坐標為(0,3).

(1)a,b的值及S三角形ABC;

(2)若點Mx軸上,S三角形ACMS三角形ABC,試求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象經(jīng)過(2,1),(1,1)兩點,則下列關于此二次函數(shù)的說法正確的是【 】

A.y的最大值小于0      B.當x=0時,y的值大于1

C.當x=1時,y的值大于1  D.當x=3時,y的值小于0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有兩枚均勻的小立方體(立方體的每個面上分別標有數(shù)字、、、、、).用小明擲立方體朝上的數(shù)字為小明擲立方體朝上的數(shù)字為來確定點,則小明各擲一次所確定的點落在已知拋物線上的概率是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一條單車道的拋物線形隧道如圖所示.隧道中公路的寬度AB=8m,隧道的最高點C到公路的距離為6m.

(1)建立適當?shù)钠矫嬷苯亲鴺讼,求拋物線的表達式;

(2)現(xiàn)有一輛貨車的高度是4.4m,貨車的寬度是2m,為了保證安全,車頂距離隧道頂部至少0.5m,通過計算說明這輛貨車能否安全通過這條隧道.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,O是對角線ACBD的交點,MBC邊上的動點(點M不與B,C重合),CNDM,與AB交于點N,連接OM,ON,MN.下列四個結論:①△CNB≌△DMC;OM=ON;③△OMN∽△OAD;AN2+CM2=MN2,其中正確結論的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商品的進價為每件50元.當售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:

(1)若設每件降價x元、每星期售出商品的利潤為y元,請寫出yx的函數(shù)關系式,并求出自變量x的取值范圍;

(2)當降價多少元時,每星期的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AE⊥BD于點E,S矩形ABCD=40cm2,SABE:SDBA=1:5,則AE=_____

查看答案和解析>>

同步練習冊答案