【題目】如圖,已知△ABC和△ADE均為等邊三角形,點DBC邊上,DEAC相交于點F,圖中相似的三角形有( 。⿲Γ

A.3B.4C.5D.6

【答案】C

【解析】

由等邊三角形的性質(zhì)得出BACBCDAEADEE60°,得出ABC∽△ADE,再證出BADFAE,得出ABD∽△AEF;由AFEDFC,EC,證出AEF∽△DCF,得出ABD∽△DCF;由DAFCADADFC,即可得出ADF∽△ACD

解:圖中的相似三角形有ABC∽△ADEABD∽△AEF,AEF∽△DCFABD∽△DCF,ADF∽△ACD;理由如下:

∵△ABCADE均為等邊三角形,

∴∠BACBCDAEADEE60°,

∴△ABC∽△ADE;

∵∠BACDAE,

∴∠BADFAE,

∴△ABD∽△AEF;

∵∠AFEDFCEC,

∴△AEF∽△DCF

∴△ABD∽△DCF;

∵∠DAFCADADFC,

∴△ADF∽△ACD

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCDAB=4, BC=8,E、FBC、AD上的點,且BE=DF.

(1)求證:四邊形AECF是平行四邊形.

(2)如果四邊形AECF是菱形,求這個菱形的邊長.

(3)如圖2,(2)的條件下,取AB、CD的中點GH,連接DG、BH, DG分別交AE、CF于點M、Q, BH分別交AE、CF于點N、P,求點PBC的距離并直接寫出四邊形MNPQ的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用鐵片制作的圓錐形容器蓋如圖所示.

1)我們知道:把平面內(nèi)線段OP繞著端點O旋轉(zhuǎn)1周,端點P運動所形成的圖形叫做圓.類比圓的定義,給圓錐下定義 ;

2)已知OB2 cm,SB3 cm,

①計算容器蓋鐵皮的面積;

②在一張矩形鐵片上剪下一個扇形,用它圍成該圓錐形容器蓋.以下是可供選用的矩形鐵片的長和寬,其中可以選擇且面積最小的矩形鐵片是

A6 cm×4 cm B6 cm×4.5 cm C7 cm×4 cm D7 cm×4.5 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因抖音等新媒體的傳播,西安已成為最著名的網(wǎng)紅旅游城市之一,2018十一黃金周期間,接待游客已達(dá)萬人次,古城西安美食無數(shù),一家特色小面店希望在長假期間獲得較好的收益,經(jīng)測算知,該小面的成本價為每碗元,借鑒以往經(jīng)驗;若每碗小面賣元,平均每天能夠銷售碗,若降價銷售,毎降低元,則平均每天能夠多銷售碗.為了維護城市形象,店家規(guī)定每碗小面的售價不得超過元,則當(dāng)每碗小面的售價定為多少元時,店家才能實現(xiàn)每天盈利元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OA1B1C1,A1A2B2C2,A2A3B3C3都是菱形,點A1,A2,A3,都在x軸上,點C1,C2,C3,都在直線yx+上,且∠C1OA1=∠C2A1A2=∠C3A2A360°,OA11,則點C6的坐標(biāo)是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個頂點坐標(biāo)分別為A(-2,1),B(-1,4),C(-3,2).

(1)以原點O為位似中心,相似比為12,在y軸的左側(cè),畫出ABC放大后的圖形A1B1C1,并直接寫出C1點的坐標(biāo);

(2)若點D(a,b)在線段AB上,請直接寫出經(jīng)過(1)的變化后點D的對應(yīng)點D1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在正方形ABCD中,AD=4,E,F(xiàn)分別是CD,BC上的一點,且∠EAF=45°,EC=1,將△ADE繞點A沿順時針方向旋轉(zhuǎn)90°后與△ABG重合,連接EF,過點B作BM∥AG,交AF于點M,則以下結(jié)論:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正確的是  

A. ①②③ B. ②③④ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點A、B、C的坐標(biāo)分別是(1,0)、(31)、(3,3),雙曲線yk≠0x0)過點D

1)寫出D點坐標(biāo);

2)求雙曲線的解析式;

3)作直線ACy軸于點E,連結(jié)DE,求CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程有兩個不相等的實數(shù)根.

(1)求m的取值范圍;

(2)是否存在實數(shù)m,使方程的兩個實數(shù)根的倒數(shù)和等于0?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案