【題目】如圖,正方形 ABCD 的邊長(zhǎng)為 5,點(diǎn) M 是邊 BC 上的點(diǎn),DE⊥AM 于點(diǎn) E,BF∥DE,交 AM 于點(diǎn) F.若E 是 AF 的中點(diǎn),則 DE 的長(zhǎng)為( )
A.B.2C.4D.
【答案】B
【解析】
因?yàn)?/span>AF=AE+EF,則可以通過(guò)證明ABF≌DAE,從而得到AE=BF,便得到了AF=BF+EF,再利用勾股定理求出DE的長(zhǎng)即可.
解:∵四邊形ABCD是正方形,
∴AD=AB,∠BAD=90°
∵DE⊥AG,
∴∠DEM=∠AED=90°
∴∠ADE+∠DAE=90°
又∵∠BAF+∠DAE=∠BAD=90°,
∴∠ADE=∠BAF.
∵BF∥DE,
∴∠AFB=∠DEG=∠AED.
在ABF與DAE中,
,
∴ABF≌DAE(AAS).
∴BF=AE,
∵BF∥DE,∠AED=90°
∴∠AFB=90°,
∵E是AF的中點(diǎn),
∴AE=EF,
又∵BF=AE,
∴BF=EF=AE,
設(shè)BF為x,則AF為2x,
∵AB2=AF2+BF2,
∴52=(2x)2+x2,
解得x=(舍去),
∴AF=2x=,
∵DE=AF,
∴DE=,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)表示數(shù)b,且a、b滿足|a+2|+(b6)2=0
(1)點(diǎn)A表示的數(shù)為 ;點(diǎn)B表示的數(shù)為 ;
(2)若點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC,請(qǐng)?jiān)跀?shù)軸上找一點(diǎn)C,使AC=3BC,則C點(diǎn)表示的數(shù) ;
(3)若在原點(diǎn)O處放一擋板,一小球甲從點(diǎn)A處以1個(gè)單位/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)B處以2個(gè)單位/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來(lái)的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),請(qǐng)分別表示出甲、乙兩小球到原點(diǎn)的距離(用t表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①、②、③、○n、…、M、N分別是⊙O的內(nèi)接正三角形ABC、正方形ABCD、正五邊形ABCDE、…、正n邊形ABCDE…的邊AB、BC上的點(diǎn),且BM=CN,連接OM、ON.
(1)求圖①中∠MON的度數(shù);
(2)圖②中∠MON的度數(shù)是_________,圖③中∠MON的度數(shù)是___________;
(3)試探究∠MON的度數(shù)與正n邊形邊數(shù)n的關(guān)系(直接寫(xiě)出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各數(shù)填在相應(yīng)的集合內(nèi),注意數(shù)與數(shù)要用逗號(hào)隔開(kāi)
, ,0 , ,8 ,-2 ,25% ,-3.8 ,0.1011 ,100 ,-200
負(fù)數(shù)集合:{ …};
整數(shù)集合:{ … };
非負(fù)集合:{ … };
分?jǐn)?shù)集合:{ … };
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)(-5)-(+3)+(-9)-(-7); (2)-|-2|-(-3)2÷(-1)2;
(3) ; (4)-14-(1-0.5)÷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形 ABCD 中,點(diǎn) G 是 AD 的中點(diǎn),GE⊥CG 交 AB 于 E,BE=BC,連接 CE 交 BG 于 F,則∠BFC 等于_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD為△ABC外接圓的直徑,AD⊥BC,垂足為點(diǎn)F,∠ABC的平分線交AD于點(diǎn)E,連接BD,CD.
(1)求證:BD=CD;
(2)請(qǐng)判斷B,E,C三點(diǎn)是否在以D為圓心,以DB為半徑的圓上?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開(kāi)始,先向右移動(dòng)了3個(gè)單位長(zhǎng)度,再向左移動(dòng) 5 個(gè)單位長(zhǎng)度,可以看到終點(diǎn)表示的數(shù)是 .已知點(diǎn)、是數(shù)軸上的點(diǎn),完成下列各題:
(1)如果點(diǎn)表示數(shù)- 3,將點(diǎn)向右移動(dòng) 7 個(gè)單位長(zhǎng)度,那么終點(diǎn)表示的數(shù)是 ,、兩點(diǎn)間的距離是 .
(2)如果點(diǎn)表示數(shù)是3,將點(diǎn)向左移動(dòng) 7 個(gè)單位長(zhǎng)度,再向右移動(dòng)5 個(gè)單位長(zhǎng)度,那么終點(diǎn)表示的數(shù)是 ,、 兩點(diǎn)間的距離是 .
(3)一般地,如果點(diǎn)表示數(shù)為,將點(diǎn)向右移動(dòng)個(gè)單位長(zhǎng)度,再向左移動(dòng)個(gè)單位長(zhǎng)度,那么請(qǐng)你猜想終點(diǎn)表示的數(shù)是 ,、兩點(diǎn)間的距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)表示的數(shù)是點(diǎn)在點(diǎn)的右側(cè),且到點(diǎn)的距離是18;點(diǎn)在點(diǎn)與點(diǎn)之間,且到點(diǎn)的距離是到點(diǎn)距離的2倍.
(1)點(diǎn)表示的數(shù)是____________;點(diǎn)表示的數(shù)是_________;
(2)若點(diǎn)P從點(diǎn)出發(fā),沿?cái)?shù)軸以每秒4個(gè)單位長(zhǎng)度的速度向右勻速運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿?cái)?shù)軸以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為秒,在運(yùn)動(dòng)過(guò)程中,當(dāng)為何值時(shí),點(diǎn)P與點(diǎn)Q之間的距離為6?
(3)在(2)的條件下,若點(diǎn)P與點(diǎn)C之間的距離表示為PC,點(diǎn)Q與點(diǎn)B之間的距離表示為在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻使得?若存在,請(qǐng)求出此時(shí)點(diǎn)表示的數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com