解分式方程:
4
3-x
+2=
x-4
x-3
考點:解分式方程
專題:計算題
分析:分式方程變形后去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.
解答:解:分式方程變形得:
-4
x-3
+2=
x-4
x-3
,
去分母得:-4+2(x-3)=x-4,
去括號得:-4+2x-6=x-4,
移項合并得:x=6,
經(jīng)檢驗x=6是分式方程的解.
點評:此題考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.解分式方程一定注意要驗根.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,平面直角坐標系中,A(1,0),B(0,1),D為AB上任意一點,CD⊥BE,求
S△ACD
S△BCE
的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

籃球比賽中,每場比賽都要分出勝負,勝一場得2分,負一場得1分某隊全部22場比賽后積40分.若設該隊勝了x場,負了y場,則可列方程組為( 。
A、
x+y=22
x+2y=40
B、
x+y=40
2x+y=22
C、
x+y=22
2x+y=40
D、
x+y=22
2x-y=40

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

“曙光中學”有一塊三角形形狀的花圃ABC,現(xiàn)可直接測到∠A=30°,AC=40米,BC=25米,這塊花園的面積
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知四邊形ABCD中,AB∥CD.則添加下列條件,不能使四邊形ABCD成為平行四邊形的是( 。
A、AB=CD
B、∠B=∠D
C、AD∥BC
D、AD=BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

有2個信封A、B,信封A裝有四張卡片上分別寫有1、2、3、4,信封B裝有三張卡片分別寫有5、6、7,每張卡片除了數(shù)字沒有任何區(qū)別.規(guī)定:從這兩個信封中隨機抽取兩張卡片,然后把卡片上的兩個數(shù)相加,如果得到的和是3的倍數(shù),則獲勝,否則失敗.小明設計了兩種方案:
甲方案:從信封A、B中各抽取一張卡片;
乙方案:一次從信封A中抽取兩張卡片.
(1)請你用列表法或畫樹狀圖的方法描述所有可能的結(jié)果;
(2)并求出甲乙兩個方案小明勝的概率,并判斷哪種方案對小明更有利.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC中,∠C=90°,DE為AB的垂直平分線,E為垂足,且EC=DE,則∠B的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知A(-4,3)、B(-1,3)、C(-2,1),△ABC中任意一P(x0,y0)點平移后對應的點為P1(x0+2,y0-1),將△ABC作同樣的平移得到△A1B1C1
(1)畫出△A1B1C1
(2)直接寫出A1、B1、C1的坐標.
(3)在坐標軸上是否存在點P,使△PB1C1的面積等于△ABC的面積?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

先化簡,再求值:(
x+2
x2-2x
-
x-1
x2-4x+4
)
÷
2x-8
x3-2x2
,其中x使分式
|x|-3
(x+3)(x-2)
的值為零.

查看答案和解析>>

同步練習冊答案