【題目】如圖,等腰ABC中,AB=AC,A=36°,作底角ABC的平分線BDAC于點D,易得等腰BCD,作等腰BCD底角BCD的平分線CE,交BD于點E,得等腰CDE,再作等腰CDE底角CDE的平分線DF,交于CE于點F,,若已知AB=b,BC=a,記ABC為第一個等腰三角形,BCD為第二個等腰三角形,則的值為_____;第n個等腰三角形的底邊長為_____.(含有b的代數(shù)式表示)

【答案】

【解析】

先證△ABC∽△BCD,求出△BCD與△ABC的相似比為,求出第二個三角形的底邊長為,依次推出第三個三角形的底邊長…,第n個三角形的底邊長即可.

∵∠A=36°,AB=AC,

∴∠ABC=ACB180°﹣36°)=72°.

BD平分∠ABC

∴∠ABD=CBDABC=36°,

∴∠BDC=A+ABD=72°,

AD=BD=BC,△ABC∽△BCD,

,

AB=AC=bBC=BD=a,

,

a2+abb2=0,

a(取正值),

,

同理可證,第3個三角形與第2個三角形的相似比為,第3個三角形的底邊長為(2b……,

n個三角形與第(n1)個三角形的相似比為,第n個三角形的底邊長為(n1b

故答案為:;(n1b

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A為∠POQ的邊OQ上一點,以A為頂點的∠MAN的兩邊分別交射線OPM、N兩點,且∠MAN=∠POQαα為銳角).當∠MAN以點A為旋轉(zhuǎn)中心,AM邊從與AO重合的位置開始,按逆時針方向旋轉(zhuǎn)(∠MAN保持不變)時,設(shè)OMx,ONyyx≥0),AOM的面積為s,且cosα,OA是方程2z221z+100的兩根.

1)當∠MAN旋轉(zhuǎn)30°時,求點N移動的距離;

2)求證:AN2ONMN;

3)試求yx的函數(shù)關(guān)系及自變量的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,DBC邊上的中點,過AC,D三點的圓交BA的延長線于點E,連接EC

1)求證:∠E90°;

2)若AB6BC10,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,B3,﹣1)是反比函數(shù)y圖象上的一點,過B點的一次函數(shù)y=﹣x+b與反比例函數(shù)交于另一點A

1)求一次函數(shù)和反比例函數(shù)的表達式;

2)求AOB面積;

3)在A點左邊的反比例函數(shù)圖象上求點P,使得SPOASAOB32

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:

甲公司為基本工資+攬件提成,其中基本工資為70/日,每攬收一件提成2元;

乙公司無基本工資,僅以攬件提成計算工資.若當日攬件數(shù)不超過40,每件提成4元;若當日攪件數(shù)超過40,超過部分每件多提成2元.

如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計圖:

(1)現(xiàn)從今年四月份的30天中隨機抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過40(不含40)的概率;

(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的

攬件數(shù),解決以下問題:

①估計甲公司各攬件員的日平均件數(shù);

②小明擬到甲、乙兩家公司中的一家應(yīng)聘攬件員,如果僅從工資收入的角度考慮,請利用所學的統(tǒng)計知識幫他選擇,井說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】慈氏塔位于岳陽市城西洞庭湖邊,是湖南省保存最好的古塔建筑之一.如圖,小亮的目高CD1.7米,他站在D處測得塔頂?shù)难鼋恰?/span>ACG45°,小琴的目高EF1.5米,她站在距離塔底中心Ba米遠的F處,測得塔頂?shù)难鼋恰?/span>AEH62.3°.(D、B、F在同一水平線上,參考數(shù)據(jù):sin62.3°≈0.89cos62.3°≈0.46,tan62.3°≈1.9)

(1)求小亮與塔底中心的距離BD;(用含a的式子表示)

(2)若小亮與小琴相距52米,求慈氏塔的高度AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)yax2+bxy=﹣bx+a的圖象可能是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了豐富學生課余生活,決定開設(shè)以下社團活動項目:A.文學社B.藝術(shù)社C.體育社D.科創(chuàng)社,為了解學生最喜歡哪一種社團活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖.

1)這次被調(diào)查的學生共有______人;

2)請你將條形統(tǒng)計圖(2)補充完整;

3)在平時的科創(chuàng)社活動中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加科創(chuàng)比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】體育測試時,九年級一名男生,雙手扔實心球,已知實心球所經(jīng)過的路線是某個二次函數(shù)圖象的一部分,如果球出手處A點距離地面的高度為2m,當球運行的水平距離為6m時,達到最大高度5mB處(如圖),問該男生把實心球扔出多遠?(結(jié)果保留根號)

查看答案和解析>>

同步練習冊答案